BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 1424726)

  • 21. Cleavage of in vitro and in vivo formed lens protein cross-links by a novel cross-link breaker.
    Hollenbach S; Thampi P; Viswanathan T; Abraham EC
    Mol Cell Biochem; 2003 Jan; 243(1-2):73-80. PubMed ID: 12619891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of glycation in human lens protein structure change.
    Ramalho JS; Marques C; Pereira PC; Mota MC
    Eur J Ophthalmol; 1996; 6(2):155-61. PubMed ID: 8823589
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cysteine protease activated by expression of HIV-1 protease in transgenic mice. MIP26 (aquaporin-0) cleavage and cataract formation in vivo and ex vivo.
    Mitton KP; Kamiya T; Tumminia SJ; Russell P
    J Biol Chem; 1996 Dec; 271(50):31803-6. PubMed ID: 8943220
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lens glutathione, lens protein glycation and electrophoretic patterns of lens proteins in STZ induced diabetic rats.
    Yarat A; Uğuz Z; Ustünel A; Emekli N
    Glycoconj J; 1995 Oct; 12(5):622-6. PubMed ID: 8595251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glycation of hepatocyte cytosolic proteins in streptozotocin-induced diabetic rats.
    Gugliucci A; Allard MF
    Biochem Biophys Res Commun; 1996 Dec; 229(3):952-8. PubMed ID: 8954999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glycation mediated crosslinking between alpha-crystallin and MP26 in intact lens membranes.
    Prabhakaram M; Katz ML; Ortwerth BJ
    Mech Ageing Dev; 1996 Oct; 91(1):65-78. PubMed ID: 8910261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Confocal fluorescence microscopy study of interaction between lens MIP26/AQP0 and crystallins in living cells.
    Liu BF; Liang JJ
    J Cell Biochem; 2008 May; 104(1):51-8. PubMed ID: 18004741
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glycated Cu,Zn-superoxide dismutase in rat lenses: evidence for the presence of fragmentation in vivo.
    Takata I; Kawamura N; Myint T; Miyazawa N; Suzuki K; Maruyama N; Mino M; Taniguchi N
    Biochem Biophys Res Commun; 1996 Feb; 219(1):243-8. PubMed ID: 8619815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advanced glycation endproducts in human diabetic and non-diabetic cataractous lenses.
    Pokupec R; Kalauz M; Turk N; Turk Z
    Graefes Arch Clin Exp Ophthalmol; 2003 May; 241(5):378-84. PubMed ID: 12698254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accumulation of glycation products in alpha-H pig lens crystallin and its bearing to diabetic cataract genesis.
    Vidal P; Cabezas-Cerrato J
    Acta Ophthalmol (Copenh); 1988 Oct; 66(5):589-92. PubMed ID: 3218484
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alterations of urea-insoluble membrane fraction, MP26, of Emory mouse lenses in aging and cataractogenesis.
    Lo WK; Kuck JF
    Ophthalmic Res; 1990; 22(2):82-8. PubMed ID: 2342782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Limited proteolysis of MP26 in lens fiber plasma membranes of the U18666A-induced cataract in rats.
    Alcala J; Cenedella RJ; Katar M
    Curr Eye Res; 1985 Sep; 4(9):1001-5. PubMed ID: 3905265
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lens cell-to-cell channel protein: II. Conformational change in the presence of calmodulin.
    Girsch SJ; Peracchia C
    J Membr Biol; 1985; 83(3):227-33. PubMed ID: 3999122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence of a glycemic threshold for the formation of pentosidine in diabetic dog lens but not in collagen.
    Nagaraj RH; Kern TS; Sell DR; Fogarty J; Engerman RL; Monnier VM
    Diabetes; 1996 May; 45(5):587-94. PubMed ID: 8621008
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of alpha-crystallin chaperone activity in diabetic rat lens by curcumin.
    Kumar PA; Suryanarayana P; Reddy PY; Reddy GB
    Mol Vis; 2005 Jul; 11():561-8. PubMed ID: 16088325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rate of formation of AGEs during ascorbate glycation and during aging in human lens tissue.
    Cheng R; Lin B; Ortwerth BJ
    Biochim Biophys Acta; 2002 May; 1587(1):65-74. PubMed ID: 12009426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Secondary structure analysis of purified functional CHIP28 water channels by CD and FTIR spectroscopy.
    Van Hoek AN; Wiener M; Bicknese S; Miercke L; Biwersi J; Verkman AS
    Biochemistry; 1993 Nov; 32(44):11847-56. PubMed ID: 8218256
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein glycation and in vivo distribution of human lens fluorescence.
    Mota MC; Carvalho P; Ramalho JS; Cardoso E; Gaspar AM; Abreu G
    Int Ophthalmol; 1994-1995; 18(4):187-93. PubMed ID: 7797380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The culture of rat lenses in high sugar media: effect on mixed disulfide levels.
    Dickerson JE; Lou MF; Gracy RW
    Curr Eye Res; 1995 Feb; 14(2):109-18. PubMed ID: 7768104
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ubiquitin-proteasome pathway function is required for lens cell proliferation and differentiation.
    Guo W; Shang F; Liu Q; Urim L; Zhang M; Taylor A
    Invest Ophthalmol Vis Sci; 2006 Jun; 47(6):2569-75. PubMed ID: 16723472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.