BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 142482)

  • 1. Studies of energy-linked reactions. Inhibition of oxidative phosphorylation by DL-8-methyldihydrolipoate.
    Griffiths DE; Cain K; Hyams RL
    Biochem J; 1977 Jun; 164(3):699-704. PubMed ID: 142482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of the effects of NN'-dicyclohexylcarbodi-imide, oligomycin A and aurovertin on enrgy-linked reactions in mitochondria and submitochondrial particles.
    Roberton AM; Holloway CT; Knight IG; Beechey RB
    Biochem J; 1968 Jul; 108(3):445-56. PubMed ID: 4299126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of energy-linked reactions. Net synthesis of adenosine triphosphate by isolated adenosine triphosphate synthase preparations: a role for lipoic acid and unsaturated fatty acids.
    Griffiths DE
    Biochem J; 1976 Dec; 160(3):809-12. PubMed ID: 138419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of morphine in vitro on the oxidative phosphorylation in rat liver mitochondria].
    Gegenava GP; Chistiakov VV
    Biull Eksp Biol Med; 1975 Oct; 80(10):77-9. PubMed ID: 179644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting the translocation of oxaloacetate and L-malate into rat liver mitochondria.
    Haslam JM; Griffiths DE
    Biochem J; 1968 Oct; 109(5):921-8. PubMed ID: 4235143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Citreoviridin, a specific inhibitor of the mitochondiral adenosine triphosphatase.
    Linnett PE; Mitchell AD; Osselton MD; Mulheirn LJ; Beechey RB
    Biochem J; 1978 Mar; 170(3):503-10. PubMed ID: 148274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spegazzinine, a new inhibitor of mitochondrial oxidative phosphorylation.
    Roveri OA; Vallejos RH
    Biochim Biophys Acta; 1974 Feb; 333(2):187-94. PubMed ID: 19400031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibiotic inhibitors of mitochondrial ATP synthesis.
    Lardy H; Reed P; Lin CH
    Fed Proc; 1975 Jul; 34(8):1707-10. PubMed ID: 124269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition and uncoupling of oxidative phosphorylation by nonsteroidal anti-inflammatory drugs: study in mitochondria, submitochondrial particles, cells, and whole heart.
    Moreno-Sánchez R; Bravo C; Vásquez C; Ayala G; Silveira LH; Martínez-Lavín M
    Biochem Pharmacol; 1999 Apr; 57(7):743-52. PubMed ID: 10075080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of phosphate-modified ATP analogs in the reactions of oxidative phosphorylation.
    Bârzu O; Eckstein F; Dancea S; Petrescu I; Tărmure C; Ngoc LD; Hodârnău A; Mantsch HH
    Biochim Biophys Acta; 1979 Aug; 547(2):361-9. PubMed ID: 157163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of succinate, malonate and fumarate on the phosphorylating system of the submitochondrial particles.
    Kupriyanov VV; Saks VA
    FEBS Lett; 1972 Jul; 24(1):131-3. PubMed ID: 4263927
    [No Abstract]   [Full Text] [Related]  

  • 12. Studies of energy-linked reactions: stimulation of the mitochondrial Pi-ATP exchange reaction by oleoyl lipoate, oleoyl CoA and oleoyl phosphate.
    Hyams RL; Griffiths DE
    Biochem Biophys Res Commun; 1978 Jan; 80(1):104-11. PubMed ID: 341892
    [No Abstract]   [Full Text] [Related]  

  • 13. 3' Esters of ADP as energy-transfer inhibitors and probes of the catalytic site of oxidative phosphorylation.
    Schäfer G; Onur G
    Eur J Biochem; 1979 Jul; 97(2):415-24. PubMed ID: 157276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-associated deficit of mitochondrial oxidative phosphorylation in skeletal muscle: role of carnitine and lipoic acid.
    Kumaran S; Panneerselvam KS; Shila S; Sivarajan K; Panneerselvam C
    Mol Cell Biochem; 2005 Dec; 280(1-2):83-9. PubMed ID: 16311908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methyl hydroperoxy-epoxy-octadecenoate as an autoxidation product of methyl linoleate: a new inhibitor-uncoupler of mitochondrial respiration.
    Imagawa T; Kasai S; Matsui K; Nakamura T
    J Biochem; 1982 Oct; 92(4):1109-21. PubMed ID: 7174640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of inhibition of mitochondrial oxidative phosphorylation by the nonsteroidal anti-inflammatory agent diflunisal.
    McDougall P; Markham A; Cameron I; Sweetman AJ
    Biochem Pharmacol; 1983 Sep; 32(17):2595-8. PubMed ID: 6225435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative phosphorylation. The relation between the specific binding of trimethylytin and triethyltin to mitochondria and their effects on various mitochondrial functions.
    Aldridge WN; Street BW
    Biochem J; 1971 Aug; 124(1):221-34. PubMed ID: 5126473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial ATP-Pi exchange complex and the site of uncoupling of oxidative phosphorylation.
    Hatefi Y; Hanstein WG; Galante Y; Stiggall DL
    Fed Proc; 1975 Jul; 34(8):1699-706. PubMed ID: 1093889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tightly bound nucleotides of the energy-transducing ATPase, and their role in oxidative phosphorylation. II. The beef heart mitochondrial system.
    Harris DA; Radda GK; Slater EC
    Biochim Biophys Acta; 1977 Mar; 459(3):560-72. PubMed ID: 139163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane (DDT) on ATPase-linked functions in isolated rat-liver mitochondria.
    Nishihara Y; Utsumi K
    Food Chem Toxicol; 1985 Jun; 23(6):599-602. PubMed ID: 3159637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.