BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 14252296)

  • 1. SOME ELECTRON MICROSCOPICAL OBSERVATIONS ON THE EPENDYMAL CELLS OF THE CHICK EMBRYO SPINAL CORD.
    GLEES P; LEVAY S
    J Hirnforsch; 1964; 7():355-60. PubMed ID: 14252296
    [No Abstract]   [Full Text] [Related]  

  • 2. [Ultrastructure of the liquor contacting neurons of the spinal cord of reptiles].
    Vigh-Teichmann I; Vigh B; Koritsánszky S; Aros B
    Z Zellforsch Mikrosk Anat; 1970; 109(2):180-94. PubMed ID: 5506518
    [No Abstract]   [Full Text] [Related]  

  • 3. The role of ependyma in regeneration of the spinal cord in the urodele amphibian tail.
    Nordlander RH; Singer M
    J Comp Neurol; 1978 Jul; 180(2):349-74. PubMed ID: 659666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Histogenesis and cytogenesis of the developing retina. An electron microscopical study].
    Meller K
    Veroff Morphol Pathol; 1968; 77():1-77. PubMed ID: 4870389
    [No Abstract]   [Full Text] [Related]  

  • 5. [Fine structure and differentiation of the internal segment and paraboloid of photoreceptors in the chick embryo retina].
    Meller K; Breipohl W
    Z Zellforsch Mikrosk Anat; 1965 Jun; 66(5):673-84. PubMed ID: 5864194
    [No Abstract]   [Full Text] [Related]  

  • 6. [Electron microscopic contribution on the differentiation of the ependyma of the spinal cord in chicken embryos].
    Wechsler W
    Z Zellforsch Mikrosk Anat; 1966; 74(3):423-42. PubMed ID: 5986588
    [No Abstract]   [Full Text] [Related]  

  • 7. Myotome and early neurogenesis in chick embryos.
    King ED; Munger BL
    Anat Rec; 1990 Oct; 228(2):191-210. PubMed ID: 2240612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An electron microscope study of ependymal cells of the fetal, early postnatal and adult rabbit.
    TENNYSON VM; PAPPAS GD
    Z Zellforsch Mikrosk Anat; 1962; 56():595-618. PubMed ID: 13920244
    [No Abstract]   [Full Text] [Related]  

  • 9. [Comparative scanning and transmission electron microscopy studies of the ependyma of the central canal in the spinal cord of primates. I. Electron optical image of the ependyma in the central canal of the spinal cord of the callithrix monkey (Callithrix jacchus, Linné 1758)].
    Erhardt H; Meinel W
    Gegenbaurs Morphol Jahrb; 1986; 132(4):535-54. PubMed ID: 3098621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological differentiation of the Müller cell: Golgi and electron microscopy study in the chick retina.
    Prada FA; Magalhaes MM; Coimbra A; Genis-Galvez JM
    J Morphol; 1989 Jul; 201(1):11-22. PubMed ID: 2746646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Ultrastructure of the CSF contacting neurons of the central canal of the spinal cord in the carp (Cyprinus carpio)].
    Vigh B; Vigh-Teichmann I; Aros B
    Z Zellforsch Mikrosk Anat; 1971; 122(3):301-9. PubMed ID: 4330411
    [No Abstract]   [Full Text] [Related]  

  • 12. An electron microscopic analysis of abnormal ependymal cell proliferation and envelopment of sprouting axons following spinal cord transection in the rat.
    Matthews MA; St Onge MF; Faciane CL
    Acta Neuropathol; 1979 Jan; 45(1):27-36. PubMed ID: 760363
    [No Abstract]   [Full Text] [Related]  

  • 13. Ultrastructure of the mouse spinal cord ependyma.
    Bjugn R; Haugland HK; Flood PR
    J Anat; 1988 Oct; 160():117-25. PubMed ID: 3253250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron-microscopic observations on developing chick embryo liver. The Golgi complex and its possible role in the formation of glycogen.
    KARRER HE
    J Ultrastruct Res; 1960 Nov; 4():149-65. PubMed ID: 13751590
    [No Abstract]   [Full Text] [Related]  

  • 15. Axon ensheathing by ependymal cells in the human embryonic and foetal spinal cord.
    Gamble HJ
    Nature; 1968 Apr; 218(5137):182-3. PubMed ID: 5645292
    [No Abstract]   [Full Text] [Related]  

  • 16. Cellular heterogeneity in the ependymal layer of the chicken's lumbosacral spinal cord.
    Schueren AM; DeSantis M
    Exp Neurol; 1985 Feb; 87(2):387-91. PubMed ID: 3967723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regeneration of axons in transection of the carp spinal cord.
    Yamada H; Miyake T; Kitamura T
    Zoolog Sci; 1995 Jun; 12(3):325-32. PubMed ID: 7580813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathfinding by growth cones of commissural interneurons in the chick embryo spinal cord: a light and electron microscopic study.
    Yaginuma H; Homma S; Künzi R; Oppenheim RW
    J Comp Neurol; 1991 Feb; 304(1):78-102. PubMed ID: 2016414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell death of motoneurons in the chick embryo spinal cord. I. A light and electron microscopic study of naturally occurring and induced cell loss during development.
    Chu-Wang IW; Oppenheim RW
    J Comp Neurol; 1978 Jan; 177(1):33-57. PubMed ID: 618439
    [No Abstract]   [Full Text] [Related]  

  • 20. Early stages of synaptogenesis in the cervical spinal cord of the chick embryo.
    Stelzner DJ; Martin AH; Scott GL
    Z Zellforsch Mikrosk Anat; 1973; 138(4):475-88. PubMed ID: 4198008
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.