These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 1425315)

  • 1. [In vitro studies of intestinal absorption and biotransformation of furazolidone].
    Klee S; Ungemach FR
    Dtsch Tierarztl Wochenschr; 1992 Oct; 99(10):398-401. PubMed ID: 1425315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigations on the biotransformation of mebendazole using an isolated perfused rat gut system.
    Gottmanns H; Kroker R; Ungemach FR
    Xenobiotica; 1991 Nov; 21(11):1431-9. PubMed ID: 1763517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-[5-nitro-2-furfurylidene]-3-amino-2-oxazolidinone activation by the human intestinal cell line Caco-2 monitored through noninvasive electron spin resonance spectroscopy.
    Rossi L; De Angelis I; Pedersen JZ; Marchese E; Stammati A; Rotilio G; Zucco F
    Mol Pharmacol; 1996 Mar; 49(3):547-55. PubMed ID: 8643095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The metabolism of albendazole in the isolated perfused intestine of rats].
    Lawrenz A; Eglit S; Kroker R
    Dtsch Tierarztl Wochenschr; 1992 Oct; 99(10):416-8. PubMed ID: 1425320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The metabolism of midazolam and comparison with other CYP enzyme substrates during intestinal absorption: in vitro studies with rat everted gut sacs.
    Arellano C; Philibert C; Vachoux C; Woodley J; Houin G
    J Pharm Pharm Sci; 2007; 10(1):26-36. PubMed ID: 17498391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of pig hepatocytes to study the nature of protein-bound metabolites of furazolidone: a new analytical method for their detection.
    Hoogenboom LA; van Kammen M; Berghmans MC; Koeman JH; Kuiper HA
    Food Chem Toxicol; 1991 May; 29(5):321-8. PubMed ID: 2060890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A contribution to safety assessment of veterinary drug residues: in vitro/ex vivo studies on the intestinal toxicity and transport of covalently bound residues.
    Klee S; Baumung I; Kluge K; Ungemach FR; Horne E; O'Keeffe M; De Angelis I; Vignoli AL; Zucco F; Stammati A
    Xenobiotica; 1999 Jun; 29(6):641-54. PubMed ID: 10426562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism in vivo of furazolidone: evidence for formation of an open-chain carboxylic acid and alpha-ketoglutaric acid from the nitrofuran in rats.
    Tatsumi K; Nakabeppu H; Takahashi Y; Kitamura S
    Arch Biochem Biophys; 1984 Oct; 234(1):112-6. PubMed ID: 6486813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransformation of furaltadone by pig hepatocytes and Salmonella typhimurium TA 100 bacteria, and the formation of protein-bound metabolites.
    Hoogenboom LA; Polman TH; Lommen A; Huveneers MB; van Rhijn J
    Xenobiotica; 1994 Aug; 24(8):713-27. PubMed ID: 7839695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The elimination of furazolidone and its open-chain cyano-derivative from adult swine.
    Vroomen LH; Berghmans MC; Hekman P; Hoogenboom LA; Kuiper HA
    Xenobiotica; 1987 Dec; 17(12):1427-35. PubMed ID: 3326298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intestinal absorption and metabolism of 6-mercaptopurine in the rat small intestine.
    Ravis WR; Wang JS; Feldman S
    Biochem Pharmacol; 1984 Feb; 33(3):443-8. PubMed ID: 6546693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The absorption of a new sustained release furazolidone formulation from the digestive tract of piglets and calves.
    Hekman P; Rietveld EC
    Vet Q; 1988 Oct; 10(4):265-9. PubMed ID: 3218069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intestinal uptake of genistein and its glycoside in the rat using various isolated perfused gut segments.
    Steensma A; Bienenmann-Ploum ME; Noteborn HP
    Environ Toxicol Pharmacol; 2004 Jun; 17(2):103-10. PubMed ID: 21782720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absorption, distribution, metabolism, and excretion of furazolidone. A review of the literature.
    White AH
    Scand J Gastroenterol Suppl; 1989; 169():4-10. PubMed ID: 2694342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucuronidation in isolated perfused rat intestinal segments after mucosal and serosal administration of 1-naphthol.
    Koster AS; Noordhoek J
    J Pharmacol Exp Ther; 1983 Aug; 226(2):533-8. PubMed ID: 6875863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation and subsequent glucuronidation of 3,4-benzopyrene in everted intestinal sacs in control and 3-methylcholanthrene-pretreated rats.
    Hietanem E
    Pharmacology; 1980; 21(4):233-43. PubMed ID: 6252563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reductive metabolism of furazolidone by Escherichia coli and rat liver in vitro.
    Abraham RT; Knapp JE; Minnigh MB; Wong LK; Zemaitis MA; Alvin JD
    Drug Metab Dispos; 1984; 12(6):732-41. PubMed ID: 6150823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intestinal bioavailability and biotransformation of 3,3',4,4'-tetrachlorobiphenyl (CB 77) in in situ preparations of channel catfish following dietary induction of CYP1A.
    Doi AM; Lou Z; Holmes E; Venugopal CS; Nyagode B; James MO; Kleinow KM
    Aquat Toxicol; 2006 Apr; 77(1):33-42. PubMed ID: 16364462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioavailability and biotransformation of benzo(a)pyrene in an isolated perfused In situ catfish intestinal preparation.
    Kleinow KM; James MO; Tong Z; Venugopalan CS
    Environ Health Perspect; 1998 Mar; 106(3):155-66. PubMed ID: 9449680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Furazolidone disposition after intravascular and oral dosing in the channel catfish.
    Plakas SM; el Said KR; Stehly GR
    Xenobiotica; 1994 Nov; 24(11):1095-105. PubMed ID: 7701851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.