BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 14253448)

  • 1. GLUTAMYL AND GLUTAMINYL RIBONUCLEIC ACID SYNTHETASES OF ESCHERICHIA COLI W. SEPARATION, PROPERTIES, AND STIMULATION OF ADENOSINE TRIPHOSPHATE-PYROPHOSPHATE EXCHANGE BY ACCEPTOR RIBONUCLEIC ACID.
    RAVEL JM; WANG SF; HEINEMEYER C; SHIVE W
    J Biol Chem; 1965 Jan; 240():432-8. PubMed ID: 14253448
    [No Abstract]   [Full Text] [Related]  

  • 2. DEMONSTRATION OF AN ALTERED AMINOACYL RIBONUCLEIC ACID SYNTHETASE IN A MUTANT OF ESCHERICHIA COLI.
    FANGMAN WL; NEIDHARDT FC
    J Biol Chem; 1964 Jun; 239():1839-43. PubMed ID: 14213362
    [No Abstract]   [Full Text] [Related]  

  • 3. Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. II. Interaction with intact glutamyl transfer ribonucleic acid.
    Lapointe J; Söll D
    J Biol Chem; 1972 Aug; 247(16):4975-81. PubMed ID: 4341532
    [No Abstract]   [Full Text] [Related]  

  • 4. On the rate law and mechanism of the adenosine triphosphate--pyrophosphate isotope exchange reaction of amino acyl transfer ribonucleic acid synthetases.
    Cole FX; Schimmel PR
    Biochemistry; 1970 Feb; 9(3):480-9. PubMed ID: 4313472
    [No Abstract]   [Full Text] [Related]  

  • 5. Differences in the thermal inactivation properties of lysyl and arginyl transfer ribonucleic acid synthetases of bakers' yeast.
    Chlumecka V; Mitra SK; D'Obrenan P; Smith CJ
    J Biol Chem; 1970 May; 245(9):2241-6. PubMed ID: 4315148
    [No Abstract]   [Full Text] [Related]  

  • 6. THE BIOSYNTHESIS OF PHOSPHATIDIC ACID AND LYSOPHOSPHATIDIC ACID BY GLYCERIDE PHOSPHOKINASE PATHWAYS IN ESCHERICHIA COLI.
    PIERINGER RA; KUNNES RS
    J Biol Chem; 1965 Jul; 240():2833-8. PubMed ID: 14342303
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of transfer ribonucleic acid on the rate law and mechanism of the adenosine triphosphate--pyrophosphate isotope exchange reaction of an aminoacyl transfer ribonucleic acid synthetase.
    McNeil MR; Schimmel PR
    Arch Biochem Biophys; 1972 Sep; 152(1):175-9. PubMed ID: 4342105
    [No Abstract]   [Full Text] [Related]  

  • 8. PURIFICATION AND PROPERTIES OF THE PROLYL RNA SYNTHETASE OF ESCHERICHIA COLI.
    NORTON SJ
    Arch Biochem Biophys; 1964 Jul; 106():147-52. PubMed ID: 14217147
    [No Abstract]   [Full Text] [Related]  

  • 9. A comparative study of the interactions of Escherichia coli leucyl-, seryl-, and valyl-transfer ribonucleic acid synthetases with their cognate transfer ribonucleic acids.
    Myers G; Blank HU; Söll D
    J Biol Chem; 1971 Aug; 246(16):4955-64. PubMed ID: 4936720
    [No Abstract]   [Full Text] [Related]  

  • 10. PROTEIN AND NUCLEIC ACID SYNTHESIS IN TWO MUTANTS OF ESCHERICHIA COLI WITH TEMPERATURE-SENSITIVE AMINOACYL RIBONUCLEIC ACID SYNTHETASES.
    EIDLIC L; NEIDHARDT FC
    J Bacteriol; 1965 Mar; 89(3):706-11. PubMed ID: 14273649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of the threonyl adenylate complex with threonyl transfer ribonucleic acid synthetase and its reaction with hydroxylamine.
    Hirsh DI
    J Biol Chem; 1968 Nov; 243(21):5731-8. PubMed ID: 4301684
    [No Abstract]   [Full Text] [Related]  

  • 12. Chloroquine and synthesis of aminoacyl transfer ribonucleic acids. Tryptophanyl transfer ribonucleic acid synthetase of Escherichia coli and tryptophanyladenosine triphosphate formation.
    Muench KH
    Biochemistry; 1969 Dec; 8(12):4872-9. PubMed ID: 4312458
    [No Abstract]   [Full Text] [Related]  

  • 13. PARTIAL PURIFICATION AND PROPERTIES OF PROLYL-RNA SYNTHETASE OF RAT LIVER.
    FRASER MJ; KLASS DB
    Can J Biochem Physiol; 1963 Oct; 41():2123-40. PubMed ID: 14083977
    [No Abstract]   [Full Text] [Related]  

  • 14. Modification of the transfer function of proline transfer ribonucleic acid synthetase by temperature.
    Papas TS; Mehler AH
    J Biol Chem; 1968 Jul; 243(13):3767-9. PubMed ID: 4298404
    [No Abstract]   [Full Text] [Related]  

  • 15. Aminoacyl transfer RNA formation. I. Absence of pyrophosphate-ATP exchange in aminoacyl-tRNA formation stimulated by polyamines.
    Igarashi K; Matsuzaki K; Takeda Y
    Biochim Biophys Acta; 1971 Nov; 254(1):91-103. PubMed ID: 4332417
    [No Abstract]   [Full Text] [Related]  

  • 16. The aminoacyl transfer ribonucleic acid synthetases. II. Properties of an adenosine triphosphate-threonyl transfer ribonucleic acid synthetase complex.
    Allende CC; Chaimovich H; Gatica M; Allende JE
    J Biol Chem; 1970 Jan; 245(1):93-101. PubMed ID: 5411549
    [No Abstract]   [Full Text] [Related]  

  • 17. Rat liver glutamyl ribonucleic acid synthetase. II. Further properties and anomalous pyrophosphate exchange.
    Deutscher MP
    J Biol Chem; 1967 Mar; 242(6):1132-9. PubMed ID: 4290313
    [No Abstract]   [Full Text] [Related]  

  • 18. Transfer ribonucleic acid synthetase catalyzed deacylation of aminoacyl transfer ribonucleic acid in the absence of adenosine monophosphate and pyrophosphate.
    Schreier AA; Schimmel PR
    Biochemistry; 1972 Apr; 11(9):1582-9. PubMed ID: 4337554
    [No Abstract]   [Full Text] [Related]  

  • 19. STUDIES ON THE RIBONUCLEIC ACID POLYMERASE FROM ESCHERICHIA COLI. I. PURIFICATION OF THE ENZYME AND STUDIES OF RIBONUCLEIC ACID FORMATION.
    STEVENS A; HENRY J
    J Biol Chem; 1964 Jan; 239():196-203. PubMed ID: 14114843
    [No Abstract]   [Full Text] [Related]  

  • 20. Isoleucyl transfer ribonucleic acid synthetase. The role of magnesium in amino acid activation.
    Cole FX; Schimmel PR
    Biochemistry; 1970 Aug; 9(16):3143-8. PubMed ID: 4321368
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.