BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 1425349)

  • 61. Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm.
    Kudoh T; Wilson SW; Dawid IB
    Development; 2002 Sep; 129(18):4335-46. PubMed ID: 12183385
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Refinement of gene expression patterns in the early Xenopus embryo.
    Wardle FC; Smith JC
    Development; 2004 Oct; 131(19):4687-96. PubMed ID: 15329341
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis.
    Zohn IE; Brivanlou AH
    Dev Biol; 2001 Nov; 239(1):118-31. PubMed ID: 11784023
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Xenopus VegT RNA is localized to the vegetal cortex during oogenesis and encodes a novel T-box transcription factor involved in mesodermal patterning.
    Zhang J; King ML
    Development; 1996 Dec; 122(12):4119-29. PubMed ID: 9012531
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Inhibition of BMP activity by the FGF signal promotes posterior neural development in zebrafish.
    Koshida S; Shinya M; Nikaido M; Ueno N; Schulte-Merker S; Kuroiwa A; Takeda H
    Dev Biol; 2002 Apr; 244(1):9-20. PubMed ID: 11900455
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The role of Xenopus dickkopf1 in prechordal plate specification and neural patterning.
    Kazanskaya O; Glinka A; Niehrs C
    Development; 2000 Nov; 127(22):4981-92. PubMed ID: 11044411
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Identification of a retinoic acid-sensitive period during primary axis formation in Xenopus laevis.
    Sive HL; Draper BW; Harland RM; Weintraub H
    Genes Dev; 1990 Jun; 4(6):932-42. PubMed ID: 2384214
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Gastrulation and larval pattern in Xenopus after blastocoelic injection of a Xenopus-derived inducing factor: experiments testing models for the normal organization of mesoderm.
    Cooke J; Smith JC
    Dev Biol; 1989 Feb; 131(2):383-400. PubMed ID: 2912801
    [TBL] [Abstract][Full Text] [Related]  

  • 69. FGF signalling in the early specification of mesoderm in Xenopus.
    Amaya E; Stein PA; Musci TJ; Kirschner MW
    Development; 1993 Jun; 118(2):477-87. PubMed ID: 8223274
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation.
    Jones CM; Kuehn MR; Hogan BL; Smith JC; Wright CV
    Development; 1995 Nov; 121(11):3651-62. PubMed ID: 8582278
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Signaling specificities of fibroblast growth factor receptors in early Xenopus embryo.
    Umbhauer M; Penzo-Méndez A; Clavilier L; Boucaut J; Riou J
    J Cell Sci; 2000 Aug; 113 ( Pt 16)():2865-75. PubMed ID: 10910771
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Characterization and early embryonic expression of a neural specific transcription factor xSOX3 in Xenopus laevis.
    Penzel R; Oschwald R; Chen Y; Tacke L; Grunz H
    Int J Dev Biol; 1997 Oct; 41(5):667-77. PubMed ID: 9415486
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling.
    Hikasa H; Shibata M; Hiratani I; Taira M
    Development; 2002 Nov; 129(22):5227-39. PubMed ID: 12399314
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A novel homeobox gene expressed in the anterior neural plate of the Xenopus embryo.
    Zaraisky AG; Lukyanov SA; Vasiliev OL; Smirnov YV; Belyavsky AV; Kazanskaya OV
    Dev Biol; 1992 Aug; 152(2):373-82. PubMed ID: 1353734
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Spatial and temporal properties of ventral blood island induction in Xenopus laevis.
    Kumano G; Belluzzi L; Smith WC
    Development; 1999 Dec; 126(23):5327-37. PubMed ID: 10556058
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Xenopus mesoderm induction: evidence for early size control and partial autonomy for pattern development by onset of gastrulation.
    Cooke J
    Development; 1989 Jul; 106(3):519-29. PubMed ID: 2598823
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Transgenic Xenopus embryos reveal that anterior neural development requires continued suppression of BMP signaling after gastrulation.
    Hartley KO; Hardcastle Z; Friday RV; Amaya E; Papalopulu N
    Dev Biol; 2001 Oct; 238(1):168-84. PubMed ID: 11784002
    [TBL] [Abstract][Full Text] [Related]  

  • 78. An inhibitory effect of Xenopus gastrula ectoderm on muscle cell differentiation and its role for dorsoventral patterning of mesoderm.
    Kato K; Gurdon JB
    Dev Biol; 1994 May; 163(1):222-9. PubMed ID: 8174778
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos.
    Hoppler S; Brown JD; Moon RT
    Genes Dev; 1996 Nov; 10(21):2805-17. PubMed ID: 8946920
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Pintallavis, a gene expressed in the organizer and midline cells of frog embryos: involvement in the development of the neural axis.
    Ruiz i Altaba A; Jessell TM
    Development; 1992 Sep; 116(1):81-93. PubMed ID: 1483397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.