These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 1425363)

  • 1. 2,4-Dichlorophenoxyacetic acid action on in vitro protein synthesis and its relation to polyamines.
    Rivarola V; Mori G; Balegno H
    Drug Chem Toxicol; 1992; 15(3):245-57. PubMed ID: 1425363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of 2,4-dichlorophenoxyacetic acid on polyamine synthesis in Chinese hamster ovary cells.
    Rivarola VA; Balegno HF
    Toxicol Lett; 1991 Apr; 56(1-2):151-7. PubMed ID: 2017772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2,4-Dichlorophenoxyacetic acid effects on polyamine biosynthesis.
    Rivarola V; Balegno H
    Toxicology; 1991; 68(2):109-19. PubMed ID: 1891779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of endocytosis in the internalization of spermidine-C(2)-BODIPY, a highly fluorescent probe of polyamine transport.
    Soulet D; Covassin L; Kaouass M; Charest-Gaudreault R; Audette M; Poulin R
    Biochem J; 2002 Oct; 367(Pt 2):347-57. PubMed ID: 12097141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interaction of 2,4-dichlorophenoxyacetic acid, ribosomes and polyamines in Azospirillum brasilense.
    Fabra A; Giordano W; Rivarola V; Mori G; Castro S; Balegno H
    Toxicology; 1993 Oct; 83(1-3):19-29. PubMed ID: 8248945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feedback repression of polyamine uptake into mammalian cells requires active protein synthesis.
    Mitchell JL; Diveley RR; Bareyal-Leyser A
    Biochem Biophys Res Commun; 1992 Jul; 186(1):81-8. PubMed ID: 1632796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of 2,4-dichlorophenoxyacetic acid transport and its relationship with polyamines in Azospirillum brasilense.
    Castro S; Fabra A; Mori G; Rivarola V; Giordano W; Balegno H
    Toxicol Lett; 1996 Jan; 84(1):33-6. PubMed ID: 8597175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro protein synthesis is affected by the herbicide 2,4-dichlorophenoxyacetic acid in Azospirillum brasilense.
    Rivarola V; Fabra A; Mori G; Balegno H
    Toxicology; 1992; 73(1):71-9. PubMed ID: 1375402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apoptosis is regulated by polyamines in the cell cycle of Chinese hamster ovary cells.
    López V; Falco C; Mori G; Cenzano A; Rivarola V
    Biocell; 1999 Dec; 23(3):223-8. PubMed ID: 10904546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Action of polyamines on ribonucleic acid and protein synthesis during ontogeny of human fetal liver.
    Choudhury I; Chaudhuri D; Kushari J; Mukherjea M
    Biol Neonate; 1984; 46(5):209-14. PubMed ID: 6210114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA and protein synthesis inhibition in Chinese hamster ovary cells by dichlorophenoxyacetic acid.
    Rivarola VA; Bergesse JR; Balegno HF
    Toxicol Lett; 1985 Dec; 29(2-3):137-44. PubMed ID: 4089882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tolerance to putrescine toxicity in Chinese hamster ovary cells is associated with altered uptake and export.
    Pastorian KE; Byus CV
    Exp Cell Res; 1997 Mar; 231(2):284-95. PubMed ID: 9087169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyamine modulation of iron uptake in CHO cells.
    Gaboriau F; Kreder A; Clavreul N; Moulinoux JP; Delcros JG; Lescoat G
    Biochem Pharmacol; 2004 May; 67(9):1629-37. PubMed ID: 15081862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered polyamine metabolism in Chinese hamster cells growing in a defined medium.
    Sertich GJ; Glass JR; Fuller DJ; Gerner EW
    J Cell Physiol; 1986 Apr; 127(1):114-20. PubMed ID: 3958058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antizyme induction mediates feedback limitation of the incorporation of specific polyamine analogues in tissue culture.
    Mitchell JL; Simkus CL; Thane TK; Tokarz P; Bonar MM; Frydman B; Valasinas AL; Reddy VK; Marton LJ
    Biochem J; 2004 Dec; 384(Pt 2):271-9. PubMed ID: 15315476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple pathways for uptake of paraquat, methylglyoxal bis(guanylhydrazone), and polyamines.
    Byers TL; Kameji R; Rannels DE; Pegg AE
    Am J Physiol; 1987 Jun; 252(6 Pt 1):C663-9. PubMed ID: 3109250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyamines: mysterious modulators of cellular functions.
    Igarashi K; Kashiwagi K
    Biochem Biophys Res Commun; 2000 May; 271(3):559-64. PubMed ID: 10814501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The involvement of polyamines in the proliferation of cultured retinal pigment epithelial cells.
    Yanagihara N; Moriwaki M; Shiraki K; Miki T; Otani S
    Invest Ophthalmol Vis Sci; 1996 Sep; 37(10):1975-83. PubMed ID: 8814137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epidermal growth factor: modulator of murine embryonic palate mesenchymal cell proliferation, polyamine biosynthesis, and polyamine transport.
    Gawel-Thompson KJ; Greene RM
    J Cell Physiol; 1989 Aug; 140(2):359-70. PubMed ID: 2501317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significant increases in the steady states of putrescine and spermidine/spermine N1-acetyltransferase mRNA in HeLa cells accompanied by growth arrest.
    Ichimura S; Hamana K; Nenoi M
    Biochem Biophys Res Commun; 1998 Feb; 243(2):518-21. PubMed ID: 9480841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.