These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 1425573)

  • 41. Novel colicin 10: assignment of four domains to TonB- and TolC-dependent uptake via the Tsx receptor and to pore formation.
    Pilsl H; Braun V
    Mol Microbiol; 1995 Apr; 16(1):57-67. PubMed ID: 7651137
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sequence and genetic analysis of the hemin storage (hms) system of Yersinia pestis.
    Lillard JW; Fetherston JD; Pedersen L; Pendrak ML; Perry RD
    Gene; 1997 Jul; 193(1):13-21. PubMed ID: 9249062
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional analysis of yersiniabactin transport genes of Yersinia enterocolitica.
    Brem D; Pelludat C; Rakin A; Jacobi CA; Heesemann J
    Microbiology (Reading); 2001 May; 147(Pt 5):1115-1127. PubMed ID: 11320115
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Escherichia coli dam gene is expressed as a distal gene of a new operon.
    Jonczyk P; Hines R; Smith DW
    Mol Gen Genet; 1989 May; 217(1):85-96. PubMed ID: 2549371
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel locus of Yersinia enterocolitica serotype O:3 involved in lipopolysaccharide outer core biosynthesis.
    Skurnik M; Venho R; Toivanen P; al-Hendy A
    Mol Microbiol; 1995 Aug; 17(3):575-94. PubMed ID: 8559076
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Flagellar flhA, flhB and flhE genes, organized in an operon, cluster upstream from the inv locus in Yersinia enterocolitica.
    Fauconnier A; Allaoui A; Campos A; Van Elsen A; Cornelis GR; Bollen A
    Microbiology (Reading); 1997 Nov; 143 ( Pt 11)():3461-3471. PubMed ID: 9387224
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of residues determining specificity of Vibrio cholerae TonB1 for its receptors.
    Mey AR; Payne SM
    J Bacteriol; 2003 Feb; 185(4):1195-207. PubMed ID: 12562789
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Proteomic analysis of Yersinia enterocolitica biovar 1A under iron-rich and iron-poor conditions indicate existence of efficiently regulated mechanisms of iron homeostasis.
    Kanaujia PK; Bajaj P; Kumar S; Singhal N; Virdi JS
    J Proteomics; 2015 Jun; 124():39-49. PubMed ID: 25913300
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fur regulon in gram-negative bacteria. Identification and characterization of new iron-regulated Escherichia coli genes by a fur titration assay.
    Stojiljkovic I; Bäumler AJ; Hantke K
    J Mol Biol; 1994 Feb; 236(2):531-45. PubMed ID: 8107138
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genetics and regulation of heme iron transport in Shigella dysenteriae and detection of an analogous system in Escherichia coli O157:H7.
    Mills M; Payne SM
    J Bacteriol; 1995 Jun; 177(11):3004-9. PubMed ID: 7768795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of heme uptake cluster genes in the fish pathogen Vibrio anguillarum.
    Mouriño S; Osorio CR; Lemos ML
    J Bacteriol; 2004 Sep; 186(18):6159-67. PubMed ID: 15342586
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Production of Escherichia coli LamB protein in Yersinia enterocolitica.
    Brzostek K; Heleszko H; Hrebenda J
    FEMS Microbiol Lett; 1995 Mar; 127(1-2):17-21. PubMed ID: 7737479
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification and cloning of a fur regulatory gene in Yersinia pestis.
    Staggs TM; Perry RD
    J Bacteriol; 1991 Jan; 173(2):417-25. PubMed ID: 1898928
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Disruption of tonB in Bordetella bronchiseptica and Bordetella pertussis prevents utilization of ferric siderophores, haemin and haemoglobin as iron sources.
    Nicholson ML; Beall B
    Microbiology (Reading); 1999 Sep; 145 ( Pt 9)():2453-2461. PubMed ID: 10517598
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ferric enterochelin transport in Yersinia enterocolitica: molecular and evolutionary aspects.
    Schubert S; Fischer D; Heesemann J
    J Bacteriol; 1999 Oct; 181(20):6387-95. PubMed ID: 10515929
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sequence, localization and function of the invasin protein of Yersinia enterocolitica.
    Young VB; Miller VL; Falkow S; Schoolnik GK
    Mol Microbiol; 1990 Jul; 4(7):1119-28. PubMed ID: 2233250
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An Exposed Outer Membrane Hemin-Binding Protein Facilitates Hemin Transport by a TonB-Dependent Receptor in Riemerella anatipestifer.
    Liu M; Liu S; Huang M; Wang Y; Wang M; Tian X; Li L; Yang Z; Wang M; Zhu D; Jia R; Chen S; Zhao X; Yang Q; Wu Y; Zhang S; Huang J; Ou X; Mao S; Gao Q; Sun D; Yu YL; Cheng A
    Appl Environ Microbiol; 2021 Jul; 87(15):e0036721. PubMed ID: 33990314
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of the transcriptional activator, VirF, and temperature in the expression of the pYV plasmid genes of Yersinia enterocolitica.
    Lambert de Rouvroit C; Sluiters C; Cornelis GR
    Mol Microbiol; 1992 Feb; 6(3):395-409. PubMed ID: 1552853
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vivo evidence for FhuA outer membrane receptor interaction with the TonB inner membrane protein of Escherichia coli.
    Günter K; Braun V
    FEBS Lett; 1990 Nov; 274(1-2):85-8. PubMed ID: 2253788
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lipoprotein e(P4) is essential for hemin uptake by Haemophilus influenzae.
    Reidl J; Mekalanos JJ
    J Exp Med; 1996 Feb; 183(2):621-9. PubMed ID: 8627173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.