These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 14259761)

  • 1. BIOLOGICAL FORMATION OF MOLECULAR HYDROGEN.
    GRAY CT; GEST H
    Science; 1965 Apr; 148(3667):186-92. PubMed ID: 14259761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation.
    Peters JW; Schut GJ; Boyd ES; Mulder DW; Shepard EM; Broderick JB; King PW; Adams MW
    Biochim Biophys Acta; 2015 Jun; 1853(6):1350-69. PubMed ID: 25461840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic regulation of hydrogenase transcription in different bacteria.
    Kovács AT; Rákhely G; Balogh J; Maróti G; Fülöp A; Kovács KL
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):36-8. PubMed ID: 15667258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications.
    Schut GJ; Boyd ES; Peters JW; Adams MW
    FEMS Microbiol Rev; 2013 Mar; 37(2):182-203. PubMed ID: 22713092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [NiFe] hydrogenases: a common active site for hydrogen metabolism under diverse conditions.
    Shafaat HS; Rüdiger O; Ogata H; Lubitz W
    Biochim Biophys Acta; 2013; 1827(8-9):986-1002. PubMed ID: 23399489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamentals of the fermentative production of hydrogen.
    Hallenbeck PC
    Water Sci Technol; 2005; 52(1-2):21-9. PubMed ID: 16180405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solar-driven hydrogen production in green algae.
    Burgess SJ; Tamburic B; Zemichael F; Hellgardt K; Nixon PJ
    Adv Appl Microbiol; 2011; 75():71-110. PubMed ID: 21807246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HYDROGENASE ACTIVITY IN CHLORELLA.
    STILLER M; LEE JK
    Biochim Biophys Acta; 1964 Oct; 93():174-6. PubMed ID: 14249146
    [No Abstract]   [Full Text] [Related]  

  • 10. The key role of the redox status in regulation of metabolism in photosynthesizing organisms.
    Kornas A; Kuźniak E; Slesak I; Miszalski Z
    Acta Biochim Pol; 2010; 57(2):143-51. PubMed ID: 20559571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen and hydrogen peroxide in the early evolution of life on earth: in silico comparative analysis of biochemical pathways.
    Slesak I; Slesak H; Kruk J
    Astrobiology; 2012 Aug; 12(8):775-84. PubMed ID: 22970865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival.
    Greening C; Biswas A; Carere CR; Jackson CJ; Taylor MC; Stott MB; Cook GM; Morales SE
    ISME J; 2016 Mar; 10(3):761-77. PubMed ID: 26405831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anammox--growth physiology, cell biology, and metabolism.
    Kartal B; van Niftrik L; Keltjens JT; Op den Camp HJ; Jetten MS
    Adv Microb Physiol; 2012; 60():211-62. PubMed ID: 22633060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering primordial cyanobacterial genome functions from protein network analysis.
    Harel A; Karkar S; Cheng S; Falkowski PG; Bhattacharya D
    Curr Biol; 2015 Mar; 25(5):628-34. PubMed ID: 25683807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sequential electron transfer from hydrogenases to cytochromes in sulfate-reducing bacteria.
    Aubert C; Brugna M; Dolla A; Bruschi M; Giudici-Orticoni MT
    Biochim Biophys Acta; 2000 Jan; 1476(1):85-92. PubMed ID: 10606770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation.
    Buckel W; Thauer RK
    Biochim Biophys Acta; 2013 Feb; 1827(2):94-113. PubMed ID: 22800682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hydrogen-sensing multiprotein complex controls aerobic hydrogen metabolism in Ralstonia eutropha.
    Friedrich B; Buhrke T; Burgdorf T; Lenz O
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):97-101. PubMed ID: 15667276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of nitrite-oxidizing bacteria by aerobic hydrogen oxidation.
    Koch H; Galushko A; Albertsen M; Schintlmeister A; Gruber-Dorninger C; Lücker S; Pelletier E; Le Paslier D; Spieck E; Richter A; Nielsen PH; Wagner M; Daims H
    Science; 2014 Aug; 345(6200):1052-4. PubMed ID: 25170152
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.