BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 1426549)

  • 1. Stability and unfolding studies on papain.
    Briggs GS; Freedman RB; Goodenough PW; Sumner IG
    Biochem Soc Trans; 1992 Aug; 20(3):257S. PubMed ID: 1426549
    [No Abstract]   [Full Text] [Related]  

  • 2. Conformational flexibility of enzyme active sites.
    Tsou CL
    Science; 1993 Oct; 262(5132):380-1. PubMed ID: 8211158
    [No Abstract]   [Full Text] [Related]  

  • 3. Inactivation before significant conformational change during denaturation of papain by guanidine hydrochloride.
    Xiao J; Liang SJ; Tsou CL
    Biochim Biophys Acta; 1993 Jun; 1164(1):54-60. PubMed ID: 8518296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active site structure and stability of the thiol protease papain studied by electron paramagnetic resonance employing a methanethiosulfonate spin label.
    Butterfield DA; Lee J
    Arch Biochem Biophys; 1994 Apr; 310(1):167-71. PubMed ID: 8161201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism for stabilization of the molten globule state of papain by sodium n-alkyl sulfates: spectroscopic and calorimetric approaches.
    Chamani J; Heshmati M
    J Colloid Interface Sci; 2008 Jun; 322(1):119-27. PubMed ID: 18405913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-pressure denaturation of staphylococcal nuclease proline-to-glycine substitution mutants.
    Vidugiris GJ; Truckses DM; Markley JL; Royer CA
    Biochemistry; 1996 Mar; 35(12):3857-64. PubMed ID: 8620010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of native and covalently modified papain.
    Rajalakshmi N; Sundaram PV
    Protein Eng; 1995 Oct; 8(10):1039-47. PubMed ID: 8771185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability and proteolytic activity of papain in reverse micellar and aqueous media: a kinetic and spectroscopic study.
    Vicente LC; Aires-Barros R; Empis JM
    J Chem Technol Biotechnol; 1994 Jul; 60(3):291-7. PubMed ID: 7764994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Domain behavior during the folding of a thermostable phosphoglycerate kinase.
    Parker MJ; Spencer J; Jackson GS; Burston SG; Hosszu LL; Craven CJ; Waltho JP; Clarke AR
    Biochemistry; 1996 Dec; 35(49):15740-52. PubMed ID: 8961937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the Cys 2-Cys 10 disulfide bond for the structure, stability, and folding kinetics of ribonuclease T1.
    Mayr LM; Willbold D; Landt O; Schmid FX
    Protein Sci; 1994 Feb; 3(2):227-39. PubMed ID: 8003959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of limited proteolysis on the stability and enzymatic activity of human placental S-adenosylhomocysteine hydrolase.
    Huang H; Yuan CS; Borchardt RT
    Protein Sci; 1997 Jul; 6(7):1482-90. PubMed ID: 9232649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilization of molten globule state of papain by urea.
    Edwin F; Sharma YV; Jagannadham MV
    Biochem Biophys Res Commun; 2002 Feb; 290(5):1441-6. PubMed ID: 11820783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of ribonuclease T2 from Aspergillus oryzae.
    Kawata Y; Hamaguchi K
    Protein Sci; 1995 Mar; 4(3):416-20. PubMed ID: 7795525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and thermodynamic studies of the folding/unfolding of a tryptophan-containing mutant of ribonuclease A.
    Sendak RA; Rothwarf DM; Wedemeyer WJ; Houry WA; Scheraga HA
    Biochemistry; 1996 Oct; 35(39):12978-92. PubMed ID: 8841145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability and kinetics of unfolding and refolding of cAMP receptor protein from Escherichia coli.
    MaƂecki J; Wasylewski Z
    Eur J Biochem; 1997 Feb; 243(3):660-9. PubMed ID: 9057829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential unfolding of papain in molten globule state.
    Edwin F; Jagannadham MV
    Biochem Biophys Res Commun; 1998 Nov; 252(3):654-60. PubMed ID: 9837762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of amino-terminal residues in the folding of the constant fragment of the immunoglobulin light chain.
    Goto Y; Hamaguchi K
    Biochemistry; 1987 Apr; 26(7):1879-84. PubMed ID: 3109473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of activity and stability of papain by adsorption on multi-wall carbon nanotubes.
    Homaei A; Samari F
    Int J Biol Macromol; 2017 Dec; 105(Pt 3):1630-1635. PubMed ID: 28223134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cysteine enhances activity and stability of immobilized papain.
    Homaei AA; Sajedi RH; Sariri R; Seyfzadeh S; Stevanato R
    Amino Acids; 2010 Mar; 38(3):937-42. PubMed ID: 19479190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.