BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 1426569)

  • 1. Synechococcus PCC6301 mutants possessing resistance to the tetrapyrrole biosynthesis inhibitor gabaculine.
    Chappell DL; Rogers LJ; Smith AJ
    Biochem Soc Trans; 1992 Aug; 20(3):285S. PubMed ID: 1426569
    [No Abstract]   [Full Text] [Related]  

  • 2. A suicide vector for allelic recombination involving the gene for glutamate 1-semialdehyde aminotransferase in the cyanobacterium Synechococcus PCC 7942.
    Allison G; Gough K; Rogers L; Smith A
    Mol Gen Genet; 1997 Jul; 255(4):392-9. PubMed ID: 9267435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of genes involved in phycocyanin biosynthesis following recovery of Synechococcus PCC 6301 from nitrogen starvation, and the effect of gabaculine on cpcBa transcript levels.
    Gilbert SM; Allison GG; Rogers LJ; Smith AJ
    FEMS Microbiol Lett; 1996 Jun; 140(1):93-8. PubMed ID: 8666206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gabaculine-resistant glutamate 1-semialdehyde aminotransferase of Synechococcus. Deletion of a tripeptide close to the NH2 terminus and internal amino acid substitution.
    Grimm B; Smith AJ; Kannangara CG; Smith M
    J Biol Chem; 1991 Jul; 266(19):12495-501. PubMed ID: 1905724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gabaculine resistance of Synechococcus glutamate 1-semialdehyde aminotransferase.
    Smith MA; Grimm B
    Biochemistry; 1992 Apr; 31(16):4122-7. PubMed ID: 1567858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small Cab-like proteins regulating tetrapyrrole biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803.
    Xu H; Vavilin D; Funk C; Vermaas W
    Plant Mol Biol; 2002 May; 49(2):149-60. PubMed ID: 11999371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absence of a catalytic water confers resistance to the neurotoxin gabaculine.
    Orriss GL; Patel TR; Sorensen J; Stetefeld J
    FASEB J; 2010 Feb; 24(2):404-14. PubMed ID: 19786580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation and partial characterization of enzymes catalyzing delta-aminolevulinic acid formation in Synechocystis sp. PCC 6803.
    Rieble S; Beale SI
    Arch Biochem Biophys; 1991 Sep; 289(2):289-97. PubMed ID: 1910318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mutant Synechococcus gene encoding glutamate 1-semialdehyde aminotransferase confers gabaculine resistance when expressed in tobacco plastids.
    Bellucci M; De Marchis F; Ferradini N; Pompa A; Veronesi F; Rosellini D
    Plant Cell Rep; 2015 Dec; 34(12):2127-36. PubMed ID: 26265112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. gsa1 is a universal tetrapyrrole synthesis gene in soybean and is regulated by a GAGA element.
    Frustaci JM; Sangwan I; O'Brian MR
    J Biol Chem; 1995 Mar; 270(13):7387-93. PubMed ID: 7706283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of gabaculine on tetrapyrrole biosynthesis and heterotrophic growth in Cyanidium caldarium.
    Houghton JD; Turner L; Brown SB
    Biochem J; 1988 Sep; 254(3):907-10. PubMed ID: 3196303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic analysis of chlorophyll biosynthesis.
    Suzuki JY; Bollivar DW; Bauer CE
    Annu Rev Genet; 1997; 31():61-89. PubMed ID: 9442890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition studies on 5-aminolevulinate biosynthesis in Pisum sativum L. (pea).
    Nair SP; Kannangara CG; Harwood JL; John RA
    Biochem Soc Trans; 1990 Aug; 18(4):656-7. PubMed ID: 2276498
    [No Abstract]   [Full Text] [Related]  

  • 14. Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition.
    McConnell MD; Koop R; Vasil'ev S; Bruce D
    Plant Physiol; 2002 Nov; 130(3):1201-12. PubMed ID: 12427987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-translational control of tetrapyrrole biosynthesis in plants, algae, and cyanobacteria.
    Czarnecki O; Grimm B
    J Exp Bot; 2012 Feb; 63(4):1675-87. PubMed ID: 22231500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synechococcus mutants resistant to an enamine mechanism inhibitor of glutamate-1-semialdehyde aminotransferase.
    Bishop K; Gough K; Mahoney S; Smith A; Rogers L
    FEBS Lett; 1999 Apr; 450(1-2):57-60. PubMed ID: 10350057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatic adaptation in marine Synechococcus strains.
    Palenik B
    Appl Environ Microbiol; 2001 Feb; 67(2):991-4. PubMed ID: 11157276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cold-induced uncoupling of energy transfer between phycobilins and chlorophyll in Anacystis nidulans: antagonistic effects of monovalent and divalent cations, and of high and low pH.
    Schreiber U
    FEBS Lett; 1979 Nov; 107(1):4-9. PubMed ID: 115721
    [No Abstract]   [Full Text] [Related]  

  • 19. Green or red: what stops the traffic in the tetrapyrrole pathway?
    Cornah JE; Terry MJ; Smith AG
    Trends Plant Sci; 2003 May; 8(5):224-30. PubMed ID: 12758040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the different spectral forms of glutamate 1-semialdehyde aminotransferase by mass spectrometry.
    Brody S; Andersen JS; Kannangara CG; Meldgaard M; Roepstorff P; von Wettstein D
    Biochemistry; 1995 Dec; 34(49):15918-24. PubMed ID: 8519748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.