These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 14270084)

  • 1. METHANE FERMENTATION OF SEWAGE SLUDGE. I. THE INFLUENCE OF PHYSICAL AND CHEMICAL FACTORS ON THE DEVELOPMENT OF METHANE BACTERIA AND THE COURSE OF FERMENTATION.
    BURACZEWSKI G
    Acta Microbiol Pol (1952); 1964; 13():321-9. PubMed ID: 14270084
    [No Abstract]   [Full Text] [Related]  

  • 2. Methane fermentation of sewage sludge. IV. Cyclic phenomena of methane fermentation at maximum concentration of acetic and butyric acids possible.
    Buraczewski G
    Acta Microbiol Pol B; 1970; 2(1):57-64. PubMed ID: 5427223
    [No Abstract]   [Full Text] [Related]  

  • 3. Methane fermentation of sewage sludge. 3. The rate of methane formation from short chain fatty acids.
    Buraczewski G
    Acta Microbiol Pol; 1966; 15(1):85-96. PubMed ID: 4160457
    [No Abstract]   [Full Text] [Related]  

  • 4. Methane production from glucose in vitro by mixed rumen bacteria.
    Demeyer DI; Henderickx HK
    Biochem J; 1967 Oct; 105(1):271-7. PubMed ID: 6056628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentation of various glycolytic intermediates and other compounds by rumen micro-organisms, with particular reference to methane production.
    Czerkawski JW; Breckenridge G
    Br J Nutr; 1972 Jan; 27(1):131-46. PubMed ID: 5059377
    [No Abstract]   [Full Text] [Related]  

  • 7. Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures.
    Steinbusch KJ; Hamelers HV; Buisman CJ
    Water Res; 2008 Sep; 42(15):4059-66. PubMed ID: 18725163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. THE INDUCTION OF ALCOHOLIC FERMENTATION IN YEAST BY SOME ORGANIC ACIDS: IMPLICATIONS IN POTASSIUM TRANSPORT.
    SCHARFF TG
    Biochem Pharmacol; 1964 May; 13():755-65. PubMed ID: 14184029
    [No Abstract]   [Full Text] [Related]  

  • 9. Biogas process parameters--energetics and kinetics of secondary fermentations in methanogenic biomass degradation.
    Montag D; Schink B
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):1019-26. PubMed ID: 26515561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of lyotropic and chromatographic effects of polar organic solvents on collagen and cellulose.
    Russell AE; Cooper DR
    Biochemistry; 1971 Oct; 10(21):3890-6. PubMed ID: 5160416
    [No Abstract]   [Full Text] [Related]  

  • 11. Production of hydrogen and methane from wastewater sludge using anaerobic fermentation.
    Ting CH; Lin KR; Lee DJ; Tay JH
    Water Sci Technol; 2004; 50(9):223-8. PubMed ID: 15581016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen and methane production from household solid waste in the two-stage fermentation process.
    Liu D; Liu D; Zeng RJ; Angelidaki I
    Water Res; 2006 Jun; 40(11):2230-6. PubMed ID: 16725172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. INFLUENCE OF HEMICELLULOSE A AND B ON CELLULOSE DIGESTION, VOLATILE FATTY ACID PRODUCTION AND FORAGE NUTRITIVE EVALUATION.
    Packett LV; Plumlee ML; Barnes R; Mott GO
    J Nutr; 1965 Jan; 85(1):89-101. PubMed ID: 14257007
    [No Abstract]   [Full Text] [Related]  

  • 14. D-ERYTHRONIC ACID 3-PHOSPHATE. A SUBSTRATE FOR ENOLASE.
    WOLD F; BARKER R
    Biochim Biophys Acta; 1964 Jun; 85():475-9. PubMed ID: 14194862
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of phosphate addition on methane fermentation in the batch and upflow anaerobic sludge blanket (UASB) reactors.
    Suzuki S; Shintani M; Sanchez ZK; Kimura K; Numata M; Yamazoe A; Kimbara K
    Appl Microbiol Biotechnol; 2015 Dec; 99(24):10457-66. PubMed ID: 26350145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propionic acid accumulation and degradation during restart of a full-scale anaerobic biowaste digester.
    Gallert C; Winter J
    Bioresour Technol; 2008 Jan; 99(1):170-8. PubMed ID: 17197176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-aerobic fermentation as a novel pre-treatment to obtain VFA and increase methane yield from primary sludge.
    Peces M; Astals S; Clarke WP; Jensen PD
    Bioresour Technol; 2016 Jan; 200():631-8. PubMed ID: 26551651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carboxylesterases (EC 3.1.1). Kinetic studies on carboxylesterases.
    Stoops JK; Horgan DJ; Runnegar MT; De Jersey J; Webb EC; Zerner B
    Biochemistry; 1969 May; 8(5):2026-33. PubMed ID: 5815945
    [No Abstract]   [Full Text] [Related]  

  • 19. [Decomposition of the health-related components of sewage sludge and liquid manure using methane fermentation].
    Poch M
    Z Gesamte Hyg; 1987 Jan; 33(1):30-1. PubMed ID: 3590871
    [No Abstract]   [Full Text] [Related]  

  • 20. Fermentative hydrogen production in a system using anaerobic digester sludge without heat treatment as a biomass source.
    Shizas I; Bagley DM
    Water Sci Technol; 2005; 52(1-2):139-44. PubMed ID: 16180420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.