These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 1427033)

  • 21. Post-translational regulation of Adr1 activity is mediated by its DNA binding domain.
    Sloan JS; Dombek KM; Young ET
    J Biol Chem; 1999 Dec; 274(53):37575-82. PubMed ID: 10608811
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the adr1-1 nonsense mutation identifies the translational start of the yeast transcriptional activator ADR1.
    Bemis LT; Denis CL
    Yeast; 1989; 5(4):291-8. PubMed ID: 2675489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of trans-acting mutations affecting Ty and Ty-mediated transcription in Saccharomyces cerevisiae.
    Ciriacy M; Freidel K; Löhning C
    Curr Genet; 1991 Dec; 20(6):441-8. PubMed ID: 1664298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The CCR1 (SNF1) and SCH9 protein kinases act independently of cAMP-dependent protein kinase and the transcriptional activator ADR1 in controlling yeast ADH2 expression.
    Denis CL; Audino DC
    Mol Gen Genet; 1991 Oct; 229(3):395-9. PubMed ID: 1944227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of a p53-related activation domain in Adr1p that is sufficient for ADR1-dependent gene expression.
    Young ET; Saario J; Kacherovsky N; Chao A; Sloan JS; Dombek KM
    J Biol Chem; 1998 Nov; 273(48):32080-7. PubMed ID: 9822683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glucose repression of the yeast ADH2 gene occurs through multiple mechanisms, including control of the protein synthesis of its transcriptional activator, ADR1.
    Vallari RC; Cook WJ; Audino DC; Morgan MJ; Jensen DE; Laudano AP; Denis CL
    Mol Cell Biol; 1992 Apr; 12(4):1663-73. PubMed ID: 1549119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissection of the ADR1 protein reveals multiple, functionally redundant activation domains interspersed with inhibitory regions: evidence for a repressor binding to the ADR1c region.
    Cook WJ; Chase D; Audino DC; Denis CL
    Mol Cell Biol; 1994 Jan; 14(1):629-40. PubMed ID: 8264631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Saccharomyces cerevisiae ADR1 gene is a positive regulator of transcription of genes encoding peroxisomal proteins.
    Simon M; Adam G; Rapatz W; Spevak W; Ruis H
    Mol Cell Biol; 1991 Feb; 11(2):699-704. PubMed ID: 1899286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Factors affecting Saccharomyces cerevisiae ADH2 chromatin remodeling and transcription.
    Verdone L; Cesari F; Denis CL; Di Mauro E; Caserta M
    J Biol Chem; 1997 Dec; 272(49):30828-34. PubMed ID: 9388226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation and identification of genes activating UAS2-dependent ADH2 expression in Saccharomyces cerevisiae.
    Donoviel MS; Young ET
    Genetics; 1996 Jul; 143(3):1137-48. PubMed ID: 8807288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and characterization of the positive regulatory gene ADR1 from Saccharomyces cerevisiae.
    Denis CL; Young ET
    Mol Cell Biol; 1983 Mar; 3(3):360-70. PubMed ID: 6341814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chromatin remodeling during Saccharomyces cerevisiae ADH2 gene activation.
    Verdone L; Camilloni G; Di Mauro E; Caserta M
    Mol Cell Biol; 1996 May; 16(5):1978-88. PubMed ID: 8628264
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyclic AMP-dependent protein kinase phosphorylates and inactivates the yeast transcriptional activator ADR1.
    Cherry JR; Johnson TR; Dollard C; Shuster JR; Denis CL
    Cell; 1989 Feb; 56(3):409-19. PubMed ID: 2644045
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cis-dominant regulatory mutations affecting the formation of glucose-repressible alcohol dehydrogenase (ADHII) in Saccharomyces cerevisiae.
    Ciriacy M
    Mol Gen Genet; 1976 Jun; 145(3):327-33. PubMed ID: 781520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ty insertions at two loci account for most of the spontaneous antimycin A resistance mutations during growth at 15 degrees C of Saccharomyces cerevisiae strains lacking ADH1.
    Paquin CE; Williamson VM
    Mol Cell Biol; 1986 Jan; 6(1):70-9. PubMed ID: 3023838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon source dependence of transposable element-associated gene activation in Saccharomyces cerevisiae.
    Taguchi AK; Ciriacy M; Young ET
    Mol Cell Biol; 1984 Jan; 4(1):61-8. PubMed ID: 6321953
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of the Saccharomyces cerevisiae ADH2 promoter for protein synthesis.
    Lee KM; DaSilva NA
    Yeast; 2005 Apr; 22(6):431-40. PubMed ID: 15849781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of expression and activity of the yeast transcription factor ADR1.
    Blumberg H; Hartshorne TA; Young ET
    Mol Cell Biol; 1988 May; 8(5):1868-76. PubMed ID: 3290644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon Catabolite Repression in Yeast is Not Limited to Glucose.
    Simpson-Lavy K; Kupiec M
    Sci Rep; 2019 Apr; 9(1):6491. PubMed ID: 31019232
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae.
    Neigeborn L; Carlson M
    Genetics; 1984 Dec; 108(4):845-58. PubMed ID: 6392017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.