These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 1427048)

  • 21. Possible role of nitric oxide in the locomotor activity of hypertensive rats.
    Pechánová O; Jendeková L; Kojsová S; Jagla F
    Behav Brain Res; 2006 Nov; 174(1):160-6. PubMed ID: 16934880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Patterning of renal cGMP production by the natriuretic peptide receptor type A and blood pressure in spontaneously hypertensive rats.
    Woodard GE; Zhao J; Rosado JA; Brown J
    Regul Pept; 2004 Jun; 119(1-2):45-51. PubMed ID: 15093696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel quantitative trait loci for blood pressure and related traits on rat chromosomes 1, 10, and 18.
    Kovács P; Voigt B; Klöting I
    Biochem Biophys Res Commun; 1997 Jun; 235(2):343-8. PubMed ID: 9199194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Spontaneous and orienting-exploratory motor activity in rats with hereditary arterial hypertension].
    Bachmanov AA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1989; 39(6):1040-7. PubMed ID: 2629388
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential effects of dopaminergic drugs on open-field behavior of spontaneously hypertensive rats and normotensive Wistar-Kyoto rats.
    van den Buuse M; de Jong W
    J Pharmacol Exp Ther; 1989 Mar; 248(3):1189-96. PubMed ID: 2564890
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic linkage of albuminuria and renal injury in Dahl salt-sensitive rats on a high-salt diet: comparison with spontaneously hypertensive rats.
    Siegel AK; Kossmehl P; Planert M; Schulz A; Wehland M; Stoll M; Bruijn JA; de Heer E; Kreutz R
    Physiol Genomics; 2004 Jul; 18(2):218-25. PubMed ID: 15161966
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [The ISIAH rat locomotion in the open field test is under control of the genes on chromosome 2 and chromosome 16].
    Redina OE; Smolenskaia SE; Maslova LN; Sakharov DG; Markel' AL
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2007; 57(6):692-701. PubMed ID: 18592704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cation transport and adenosine triphosphatase activity in rat erythrocytes: a comparison of spontaneously hypertensive rats with the normotensive Brown-Norway strain.
    Orlov SN; Petrunyaka VV; Pokudin NI; Kotelevtsev YV; Postnov YV; Kunes J; Zicha J
    J Hypertens; 1991 Oct; 9(10):977-82. PubMed ID: 1658141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic control of the spontaneous hypertension in the NZB/Cr strain of mice. Immunogenetic considerations.
    Svendsen UG; Koch CM; Rubin B
    Acta Pathol Microbiol Scand C; 1979 Aug; 87C(4):269-73. PubMed ID: 495103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dde I restriction fragment length polymorphism of the alpha 2-adrenoceptor gene does not correlate with blood pressure in the F2 generation obtained from crossing stroke-prone spontaneously hypertensive rats and Wistar-Kyoto rats.
    Kobayashi S; Umemura S; Hirawa N; Iwamoto T; Yamaguchi S; Tamura K; Takasaki I; Ishii M
    J Hypertens; 1994 Mar; 12(3):235-8. PubMed ID: 7912704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hypertension in the spontaneously hypertensive rat is linked to the Y chromosome.
    Ely DL; Turner ME
    Hypertension; 1990 Sep; 16(3):277-81. PubMed ID: 2394486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Blood pressure in genetically hypertensive rats. Influence of the Y chromosome.
    Davidson AO; Schork N; Jaques BC; Kelman AW; Sutcliffe RG; Reid JL; Dominiczak AF
    Hypertension; 1995 Sep; 26(3):452-9. PubMed ID: 7649581
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two of the genetic defects related to hypertension are located on chromosomes X and 10 of rat.
    Kumar S
    Indian J Exp Biol; 1992 Feb; 30(2):155. PubMed ID: 1325942
    [No Abstract]   [Full Text] [Related]  

  • 34. The role of dominance and epistasis in the genetic control of blood pressure in rodent models of hypertension.
    Schlager G; Chao CS
    Clin Exp Hypertens A; 1991; 13(5):947-53. PubMed ID: 1773525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phenotypic selection: a successful strategy to fix major genes of hypertension.
    Klöting I; Kovács P; van den Brandt J
    Biochem Mol Biol Int; 1999 May; 47(5):735-42. PubMed ID: 10365243
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic analysis of blood pressure in spontaneously hypertensive rats.
    Tanase H; Suzuki Y; Ooshima A; Yamori Y; Okamoto K
    Jpn Circ J; 1970 Dec; 34(12):1197-212. PubMed ID: 5537984
    [No Abstract]   [Full Text] [Related]  

  • 37. Genetic and environmental influences on reactive and spontaneous locomotor activities in rats.
    Gentsch C; Lichtsteiner M; Feer H
    Experientia; 1991 Oct; 47(10):998-1008. PubMed ID: 1936209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the hereditary transmission of microstructures of testa in reciprocal crosses between Linaria vulgaris and L. repens.
    Olsson U
    Hereditas; 1975; 79(2):251-4. PubMed ID: 1141001
    [No Abstract]   [Full Text] [Related]  

  • 39. On the hereditary transmission of microstructures of testa in reciprocal crosses between Linaria vulgaris and L. repens.
    Olsson U
    Ann Cardiol Angeiol (Paris); 1975; 24(1 SUPPL):251-4. PubMed ID: 1137317
    [No Abstract]   [Full Text] [Related]  

  • 40. Behavioral genetics and taste.
    Boughter JD; Bachmanov AA
    BMC Neurosci; 2007 Sep; 8 Suppl 3(Suppl 3):S3. PubMed ID: 17903279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.