These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 1427083)
21. Protein-RNA sequence covariation in a ribosomal protein-rRNA complex. GuhaThakurta D; Draper DE Biochemistry; 1999 Mar; 38(12):3633-40. PubMed ID: 10090750 [TBL] [Abstract][Full Text] [Related]
22. Structural basis for autogenous regulation of Xenopus laevis ribosomal protein L1 synthesis at the splicing level. Gultyaev AP; Shestopalov BV FEBS Lett; 1988 May; 232(1):9-11. PubMed ID: 3366251 [TBL] [Abstract][Full Text] [Related]
23. Sequence specificity of in vivo reverse splicing of the Tetrahymena group I intron. Roman J; Rubin MN; Woodson SA RNA; 1999 Jan; 5(1):1-13. PubMed ID: 9917062 [TBL] [Abstract][Full Text] [Related]
24. A complex twintron is excised as four individual introns. Drager RG; Hallick RB Nucleic Acids Res; 1993 May; 21(10):2389-94. PubMed ID: 7685079 [TBL] [Abstract][Full Text] [Related]
25. Intervening sequences in 23S rRNA genes and 23S rRNA fragmentation in Taylorella asinigenitalis UCD-1(T) strain. Tazumi A; Sekizuka T; Moore JE; Millar CB; Taneike I; Matsuda M J Basic Microbiol; 2008 Aug; 48(4):284-92. PubMed ID: 18720487 [TBL] [Abstract][Full Text] [Related]
26. Characterization of the 23S and 5S rRNA genes of Coxiella burnetii and identification of an intervening sequence within the 23S rRNA gene. Afseth G; Mo YY; Mallavia LP J Bacteriol; 1995 May; 177(10):2946-9. PubMed ID: 7751314 [TBL] [Abstract][Full Text] [Related]
27. In vivo facilitation of Tetrahymena group I intron splicing in Escherichia coli pre-ribosomal RNA. Zhang F; Ramsay ES; Woodson SA RNA; 1995 May; 1(3):284-92. PubMed ID: 7489500 [TBL] [Abstract][Full Text] [Related]
28. Inter- and intra-genomic heterogeneity of the intervening sequence in the 23S ribosomal RNA gene of Campylobacter jejuni and Campylobacter coli. Meinersmann RJ; Phillips RW; Ladely SR Syst Appl Microbiol; 2009 Apr; 32(2):91-100. PubMed ID: 19201124 [TBL] [Abstract][Full Text] [Related]
29. Heterogeneous yet similar introns reside in identical positions of the rRNA genes in natural isolates of the archaeon Aeropyrum pernix. Nomura N; Morinaga Y; Kogishi T; Kim EJ; Sako Y; Uchida A Gene; 2002 Jul; 295(1):43-50. PubMed ID: 12242010 [TBL] [Abstract][Full Text] [Related]
30. Evolution of introns in the archaeal world. Tocchini-Valentini GD; Fruscoloni P; Tocchini-Valentini GP Proc Natl Acad Sci U S A; 2011 Mar; 108(12):4782-7. PubMed ID: 21383132 [TBL] [Abstract][Full Text] [Related]
31. Properties of H. volcanii tRNA intron endonuclease reveal a relationship between the archaeal and eucaryal tRNA intron processing systems. Kleman-Leyer K; Armbruster DW; Daniels CJ Cell; 1997 Jun; 89(6):839-47. PubMed ID: 9200602 [TBL] [Abstract][Full Text] [Related]
32. The comings and goings of homing endonucleases and mobile introns. Doolittle RF Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5379-81. PubMed ID: 8390659 [No Abstract] [Full Text] [Related]
33. Structure of the L1 protuberance in the ribosome. Nikulin A; Eliseikina I; Tishchenko S; Nevskaya N; Davydova N; Platonova O; Piendl W; Selmer M; Liljas A; Drygin D; Zimmermann R; Garber M; Nikonov S Nat Struct Biol; 2003 Feb; 10(2):104-8. PubMed ID: 12514741 [TBL] [Abstract][Full Text] [Related]
34. Phylogenetic and molecular characterization of a 23S rRNA gene positions the genus Campylobacter in the epsilon subdivision of the Proteobacteria and shows that the presence of transcribed spacers is common in Campylobacter spp. Trust TJ; Logan SM; Gustafson CE; Romaniuk PJ; Kim NW; Chan VL; Ragan MA; Guerry P; Gutell RR J Bacteriol; 1994 Aug; 176(15):4597-609. PubMed ID: 8045890 [TBL] [Abstract][Full Text] [Related]
35. Visualization of a group II intron in the 23S rRNA of a stable ribosome. Slagter-Jäger JG; Allen GS; Smith D; Hahn IA; Frank J; Belfort M Proc Natl Acad Sci U S A; 2006 Jun; 103(26):9838-43. PubMed ID: 16785426 [TBL] [Abstract][Full Text] [Related]
36. Intervening sequence with conserved open reading frame in eubacterial 23S rRNA genes. Ralph D; McClelland M Proc Natl Acad Sci U S A; 1993 Jul; 90(14):6864-8. PubMed ID: 8341711 [TBL] [Abstract][Full Text] [Related]
37. Analysis of the chloroplast large subunit ribosomal RNA gene from 17 Chlamydomonas taxa. Three internal transcribed spacers and 12 group I intron insertion sites. Turmel M; Gutell RR; Mercier JP; Otis C; Lemieux C J Mol Biol; 1993 Jul; 232(2):446-67. PubMed ID: 8393936 [TBL] [Abstract][Full Text] [Related]
38. Introns in protein-coding genes in Archaea. Watanabe Y; Yokobori S; Inaba T; Yamagishi A; Oshima T; Kawarabayasi Y; Kikuchi H; Kita K FEBS Lett; 2002 Jan; 510(1-2):27-30. PubMed ID: 11755525 [TBL] [Abstract][Full Text] [Related]
39. Analysis of operons encoding 23S rRNA of Clostridium botulinum type A. East AK; Thompson DE; Collins MD J Bacteriol; 1992 Dec; 174(24):8158-62. PubMed ID: 1339427 [TBL] [Abstract][Full Text] [Related]
40. Splicing control of the L1 ribosomal protein gene of X.laevis: structural similarities between sequences present in the regulatory intron and in the 28S ribosomal RNA. Fragapane P; Caffarelli E; Santoro B; Sperandio S; Lener M; Bozzoni I Mol Biol Rep; 1990; 14(2-3):111-2. PubMed ID: 2362566 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]