BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 14276087)

  • 1. UPTAKE AND INCORPORATION OF THYMINE, THYMIDINE, URACIL, URIDINE, AND 5-FLUOROURACIL INTO THE NUCLEIC ACIDS OF BACILLUS SUBTILIS.
    BODMER WF; GRETHER S
    J Bacteriol; 1965 Apr; 89(4):1011-4. PubMed ID: 14276087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thymidine and thymine incorporation into deoxyribonucleic acid: inhibition and repression by uridine of thymidine phosphorylase of Escherichia coli.
    Budman DR; Pardee AB
    J Bacteriol; 1967 Nov; 94(5):1546-50. PubMed ID: 4862197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MECHANISM OF ACTION OF NALIDIXIC ACID ON ESCHERICHIA COLI.II. INHIBITION OF DEOXYRIBONUCLEIC ACID SYNTHESIS.
    GOSS WA; DEITZ WH; COOK TM
    J Bacteriol; 1965 Apr; 89(4):1068-74. PubMed ID: 14276097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of uridine and thymidine on the degradation of 5-fluorouracil, uracil, and thymine by rat liver dihydropyrimidine dehydrogenase.
    Tuchman M; Ramnaraine ML; O'Dea RF
    Cancer Res; 1985 Nov; 45(11 Pt 1):5553-6. PubMed ID: 4053028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrimidine metabolism in Acinetobacter calcoaceticus.
    Ovrebo S; Kleppe K
    J Bacteriol; 1973 Oct; 116(1):331-6. PubMed ID: 4355484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociation of cellular functions in Bacillus cereus by 5-fluorouracil.
    Reich M; Mandel HG
    J Bacteriol; 1966 Feb; 91(2):517-23. PubMed ID: 4956778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DIFFERENTIAL MUTATION PRODUCTION BY THE DECAY OF INCORPORATED TRITIUM COMPOUNDS IN E. COLI.
    PERSON S; BOCKRATH RC
    Biophys J; 1964 Sep; 4(5):355-65. PubMed ID: 14205506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EVIDENCE OF LYSOGENY IN DERIVATIVES OF ESCHERICHIA COLI.
    FRAMPTON EW; BRINKLEY BR
    J Bacteriol; 1965 Aug; 90(2):446-52. PubMed ID: 14329460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of 5-fluorouracil-containing ribonucleic acid and ribosomes from Bacillus subtilis.
    Saunders PP; Bass RE; Saunders GF
    J Bacteriol; 1968 Aug; 96(2):525-32. PubMed ID: 4970652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of coadministration of thymine or thymidine on the antitumor activity of 1-(2-tetrahydrofuryl)-5-fluorouracil and 5-fluorouracil.
    Fujii S; Kitano S; Ikenaka K; Fukushima M; Nakamura H; Maehara Y; Shirasaka T
    Gan; 1980 Feb; 71(1):100-6. PubMed ID: 6769735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of uridine into Bacillus subtilis and SPP1 bacteriophage deoxyribonucleic acid.
    Barlati S
    J Bacteriol; 1970 Jan; 101(1):330-2. PubMed ID: 4983654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The occurrence of two types of synthesis of deoxyribonucleic acid during normal growth in Bacillus subtilis.
    Harris WJ
    Biochem J; 1973 Oct; 135(2):315-25. PubMed ID: 4202939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Availability of bases and nucleosides as precursors of nucleic acids in L cells and in the agent of meningopneumonitis.
    Tribby II; Moulder JW
    J Bacteriol; 1966 Jun; 91(6):2362-7. PubMed ID: 5943944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative effects of 5-fluorouracil on strains of Bacillus megaterium.
    Wachsman JT; Kemp S; Hogg L
    J Bacteriol; 1964 May; 87(5):1011-8. PubMed ID: 4959791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of the utilization of thymine and thymidine as precursors for deoxyribonucleic acid synthesis in Bacillus subtilis, and their specific inhibition by 6-(p-hydroxyphenylazo)uracil and caffeine.
    Fraser L; Mitchell AI; Harris WJ
    Biochem J; 1972 Sep; 129(3):49P-50P. PubMed ID: 4633393
    [No Abstract]   [Full Text] [Related]  

  • 16. Incorporation of thymine, thymidine, adenine and uracil into nucleic acids of Mycobacterium phlei and its phage.
    Somogyi PA; Földes I
    Ann Microbiol (Paris); 1983; 134A(1):19-28. PubMed ID: 6847034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of chromomycin and methramycin on the synthesis of deoxyribonucleic acid and ribonucleic acids.
    Kersten W; Kersten H; Steiner FE; Emmerich B
    Hoppe Seylers Z Physiol Chem; 1967 Nov; 348(11):1415-23. PubMed ID: 4968452
    [No Abstract]   [Full Text] [Related]  

  • 18. Specificity and efficiency of thymidine incorporation in Escherichia coli lacking thymidine phosphorylase.
    Fangman WL
    J Bacteriol; 1969 Sep; 99(3):681-7. PubMed ID: 4905532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Characteristics of nucleoside and pyrimidine base metabolism in Corynebacterium glutamicum].
    Grishchenkov VG; Sukhodolets VV; Smirnov IuV
    Mikrobiologiia; 1978; 47(4):693-8. PubMed ID: 151772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of the synthesis of macromolecules during amino acid and thymine starvation in Bacillus subtilis.
    Anraku N; Landman OE
    J Bacteriol; 1968 May; 95(5):1813-27. PubMed ID: 4967776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.