These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 14276094)

  • 1. PRELIMINARY ENZYMATIC EVENTS IN ASPARAGINE-DEPENDENT DENITRIFICATION BY PSEUDOMONAS PERFECTOMARINUS.
    BEST AN; PAYNE WJ
    J Bacteriol; 1965 Apr; 89(4):1051-4. PubMed ID: 14276094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AMINO GROUP FORMATION AND GLUTAMATE SYNTHESIS IN STREPTOCOCCUS BOVIS.
    BURCHALL JJ; NIEDERMAN RA; WOLIN MJ
    J Bacteriol; 1964 Oct; 88(4):1038-44. PubMed ID: 14219016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two malic enzymes in Pseudomonas aeruginosa.
    Eyzaguirre J; Cornwell E; Borie G; Ramírez B
    J Bacteriol; 1973 Oct; 116(1):215-21. PubMed ID: 4147645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. METABOLISM OF DICARBOXYLIC ACIDS IN ACETOBACTER XYLINUM.
    BENZIMAN M; ABELIOVITZ A
    J Bacteriol; 1964 Feb; 87(2):270-7. PubMed ID: 14151044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation.
    Brown DA; Cook RA
    Biochemistry; 1981 Apr; 20(9):2503-12. PubMed ID: 7016178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PHA stimulated denitrification through regulation of preferential cofactor provision and intracellular carbon metabolism at different dissolved oxygen levels by Pseudomonas stutzeri.
    Li T; Li W; Chai X; Dai X; Wu B
    Chemosphere; 2022 Dec; 309(Pt 1):136641. PubMed ID: 36183891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties and regulation of leaf nicotinamide-adenine dinucleotide phosphate-malate dehydrogenase and 'malic' enzyme in plants with the C4-dicarboxylic acid pathway of photosynthesis.
    Johnson HS; Hatch MD
    Biochem J; 1970 Sep; 119(2):273-80. PubMed ID: 4395182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DENATURATION AND RENATURATION OF MALIC DEHYDROGENASE IN A CELL-FREE EXTRACT FROM A MARINE PSYCHROPHILE.
    BURTON SD; MORITA RY
    J Bacteriol; 1963 Nov; 86(5):1019-24. PubMed ID: 14080766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reverse reaction of malic enzyme for HCO3- fixation into pyruvic acid to synthesize L-malic acid with enzymatic coenzyme regeneration.
    Ohno Y; Nakamori T; Zheng H; Suye S
    Biosci Biotechnol Biochem; 2008 May; 72(5):1278-82. PubMed ID: 18460807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ENZYMATIC BASIS FOR D-ARBITOL PRODUCTION BY SACCHAROMYCES ROUXII.
    INGRAM JM; WOOD WA
    J Bacteriol; 1965 May; 89(5):1186-94. PubMed ID: 14292984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of l-Malate and d-Malate by a Species of Pseudomonas.
    Hopper DJ; Chapman PJ; Dagley S
    J Bacteriol; 1970 Dec; 104(3):1197-202. PubMed ID: 16559093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of the Pseudomonas multivorans glucose-6-phosphate dehydrogenase active with nicotinamide adenine dinucleotide.
    Vander Wyk JC; Lessie TG
    J Bacteriol; 1974 Dec; 120(3):1033-42. PubMed ID: 4154934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and characterization of the two 6-phosphogluconate dehydrogenase species from Pseudomonas multivorans.
    Lee YN; Lessie TG
    J Bacteriol; 1974 Dec; 120(3):1043-57. PubMed ID: 4154932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities.
    Ronchi JA; Figueira TR; Ravagnani FG; Oliveira HC; Vercesi AE; Castilho RF
    Free Radic Biol Med; 2013 Oct; 63():446-56. PubMed ID: 23747984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. II. PATHWAY OF ELECTRON TRANSPORT DURING OXIDATION OF REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE BY MYCOPLASMA HOMINIS.
    VANDEMARK PJ; SMITH PF
    J Bacteriol; 1964 Jul; 88(1):122-9. PubMed ID: 14197876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PYRITHIAMINE ADAPTATION OF STAPHYLOCOCCUS AUREUS. II. TRICARBOXYLIC ACID CYCLE AND RELATED ENZYMES.
    DAS SK; CHATTERJEE GC
    J Bacteriol; 1963 Dec; 86(6):1157-64. PubMed ID: 14086084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. POLYOL METABOLISM IN THE BASIDIOMYCETE SCHIZOPHYLLUM COMMUNE.
    NIEDERPRUEM DJ; HAFIZ A; HENRY L
    J Bacteriol; 1965 Apr; 89(4):954-9. PubMed ID: 14276121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate-linked succinic semialdehyde dehydrogenases in a Pseudonomas species.
    Padmanabhan R; Tchen TT
    J Bacteriol; 1969 Oct; 100(1):398-402. PubMed ID: 4390503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of carboxylic acids on the stereospecific nicotinamide adenine dinucleotide-dependent and nicotinamide adenine dinucleotide-independent lactate dehydrogenases of Leuconostoc mesenteroides.
    Doelle HW
    J Bacteriol; 1971 Dec; 108(3):1290-5. PubMed ID: 4333321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MALIC ENZYME AND LIPOGENESIS.
    WISE EM; BALL EG
    Proc Natl Acad Sci U S A; 1964 Nov; 52(5):1255-63. PubMed ID: 14231450
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.