These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 142768)

  • 1. Studies on the turnovers in vivo of adenosine di- and triphosphates in a coupling factor of Escherichia coli.
    Maeda M; Kobayashi H; Futai M; Anraku Y
    J Biochem; 1977 Jul; 82(1):311-4. PubMed ID: 142768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tight binding of adenine nucleotides to beef-heart mitochondrial ATPase.
    Harris DA; Rosing J; van de Stadt RJ; Slater EC
    Biochim Biophys Acta; 1973 Aug; 314(2):149-53. PubMed ID: 4270535
    [No Abstract]   [Full Text] [Related]  

  • 3. The membrane ATPase of Escherichia coli. I. Ion dependence and ATP-ADP exchange reaction.
    Roisin MP; Kepes A
    Biochim Biophys Acta; 1972 Sep; 275(3):333-46. PubMed ID: 4262689
    [No Abstract]   [Full Text] [Related]  

  • 4. Tightly bound nucleotides of the energy-transducing ATPase, and their role in oxidative phosphorylation. I. The Paracoccus denitrificans system.
    Harris DA; John P; Radda GK
    Biochim Biophys Acta; 1977 Mar; 459(3):546-59. PubMed ID: 139162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Affinity labeling of coupling factor-latent ATPase from Mycobacterium phlei with 2',3'-dialdehyde derivatives of adenosine 5'-triphosphate and adenosine 5'-diphosphate.
    Kumar G; Kalra VK; Brodie AF
    J Biol Chem; 1979 Mar; 254(6):1964-71. PubMed ID: 154517
    [No Abstract]   [Full Text] [Related]  

  • 6. The mechanism and regulation of ATP synthesis by F1-ATPases.
    Cross RL
    Annu Rev Biochem; 1981; 50():681-714. PubMed ID: 6455964
    [No Abstract]   [Full Text] [Related]  

  • 7. The interactions of coupling ATPases with nucleotides.
    Harris DA
    Biochim Biophys Acta; 1978 Mar; 463(3-4):245-73. PubMed ID: 147104
    [No Abstract]   [Full Text] [Related]  

  • 8. Non-covalently bound adenine nucleotides in adenosine triphosphatase of Escherichia coli.
    Maeda M; Kobayashi H; Futai M; Anraku Y
    Biochem Biophys Res Commun; 1976 May; 70(1):228-34. PubMed ID: 132176
    [No Abstract]   [Full Text] [Related]  

  • 9. The ATP-and ADP-binding sites in mitochondrial coupling factor F1 and their possible role in oxidative phosphorylation.
    Slater EC; Kemp A; van der Kraan I; Muller JL; Roveri OA; Verschoor GJ; Wagenvoord RJ; Wielders JP
    FEBS Lett; 1979 Jul; 103(1):7-11. PubMed ID: 467655
    [No Abstract]   [Full Text] [Related]  

  • 10. The amounts of adenosine di- and triphosphates bound to H-meromyosin and the adenosinetriphosphatase activity of the H-meromyosin-F-actin-relaxing protein system in the presence and absence of calcium ions. The physiological functions of the two routes of myosin adenosinetriphosphatase in muscle contraction.
    Inoue A; Tonomura Y
    J Biochem; 1975 Jul; 78(1):83-92. PubMed ID: 127789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the role of coupling factor B in the mitochondrial Pi-ATP exchange reaction.
    Joshi S; Hughes JB; Shaikh F; Sanadi DR
    J Biol Chem; 1979 Oct; 254(20):10145-52. PubMed ID: 158592
    [No Abstract]   [Full Text] [Related]  

  • 12. Coupling factor B involvement in the inhibition of Pi-ATP exchange activity by N-ethylmaleimide.
    Hughes J; Joshi S; Sanadi DR
    FEBS Lett; 1983 Mar; 153(2):441-6. PubMed ID: 6137415
    [No Abstract]   [Full Text] [Related]  

  • 13. Exploration of adenosine 5'-diphosphate-adenosine 5'-triphosphate binding sites of Escherichia coli adenosine 5'-triphosphatase with arylazido adenine nucleotides.
    Lunardi J; Satre M; Vignais PV
    Biochemistry; 1981 Feb; 20(3):473-80. PubMed ID: 6452156
    [No Abstract]   [Full Text] [Related]  

  • 14. Adenine nucleotide binding sites in chemically modified F1-ATPase: inhibitory effect of 4-chloro-7-nitrobenzofurazan on photolabeling by arylazido nucleotides.
    Lunardi J; Vignais PV
    FEBS Lett; 1979 Jun; 102(1):23-8. PubMed ID: 156646
    [No Abstract]   [Full Text] [Related]  

  • 15. Phosphate transport and the stoicheiometry of respiratory driven proton translocation in Escherichia coli.
    Cox JC; Haddock BA
    Biochem Biophys Res Commun; 1978 May; 82(1):46-52. PubMed ID: 27190
    [No Abstract]   [Full Text] [Related]  

  • 16. Role of mitochondrial GrpE and phosphate in the ATPase cycle of matrix Hsp70.
    Dekker PJ; Pfanner N
    J Mol Biol; 1997 Jul; 270(3):321-7. PubMed ID: 9237899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The defective proton-ATPase of uncA mutants of Escherichia coli. Studies of nucleotide binding sites, bound aurovertin fluorescence, and labeling of essential residues of the purified F1-ATPase.
    Wise JG; Latchney LR; Senior AE
    J Biol Chem; 1981 Oct; 256(20):10383-9. PubMed ID: 6457039
    [No Abstract]   [Full Text] [Related]  

  • 18. Membrane-bound adenosine triphosphatase of Escherichia coli. III. Effects of sodium azide on the enzyme functions.
    Kobayashi H; Maeda M; Anraku Y
    J Biochem; 1977 Apr; 81(4):1071-7. PubMed ID: 142083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-site kinetic mechanism for ATP binding and hydrolysis by E. coli Rep helicase dimer bound to a single-stranded oligodeoxynucleotide.
    Hsieh J; Moore KJ; Lohman TM
    J Mol Biol; 1999 Apr; 288(2):255-74. PubMed ID: 10329141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function of the two heads of the myosin molecule. I. Binding of adenosine diphosphate to myofibrils during the adenosinetriphosphatase reaction.
    Arata T; Tonomura Y
    J Biochem; 1976 Dec; 80(6):1353-8. PubMed ID: 138677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.