These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 142768)
41. Release of the alpha subunit of coupling factor F1 ATPase from membranes of an uncoupled mutant of Escherichia coli. Kanazawa H; Futai M FEBS Lett; 1980 Jan; 109(1):104-6. PubMed ID: 6444383 [No Abstract] [Full Text] [Related]
42. Kinetic studies on the ADP-ATP exchange reaction catalyzed by Na+, K+-dependent ATPase. Evidence for the K.S.T. mechanism with two enzyme-ATP complexes and two phosphorylated intermediates of high-energy type. Yamaguchi M; Tonomura Y J Biochem; 1977 Jan; 81(1):249-60. PubMed ID: 14933 [TBL] [Abstract][Full Text] [Related]
43. Stoichiometry of the H+-ATPase of Escherichia coli cells during anaerobic growth. Kashket ER FEBS Lett; 1983 Apr; 154(2):343-6. PubMed ID: 6219895 [TBL] [Abstract][Full Text] [Related]
45. Reconstitution of a functional coupling factor from the isolated subunits of Escherichia coli F1 ATPase. Dunn SD; Futai M J Biol Chem; 1980 Jan; 255(1):113-8. PubMed ID: 6444218 [No Abstract] [Full Text] [Related]
46. Negative control of DNA replication by hydrolysis of ATP bound to DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli. Mizushima T; Nishida S; Kurokawa K; Katayama T; Miki T; Sekimizu K EMBO J; 1997 Jun; 16(12):3724-30. PubMed ID: 9218813 [TBL] [Abstract][Full Text] [Related]
47. Biochemical characterization of the uncA phenotype of Escherichia coli. Maeda M; Futai M; Anraku Y Biochem Biophys Res Commun; 1976 May; 76(2):331-8. PubMed ID: 141284 [No Abstract] [Full Text] [Related]
48. Partial purification of active delta and epsilon subunits of the membrane ATPase from escherichia coli. Smith JB; Sternweis PC; Heppel LA J Supramol Struct; 1975; 3(3):248-55. PubMed ID: 127087 [TBL] [Abstract][Full Text] [Related]
49. Essential role of membrane ATPase or coupling factor for anaerobic growth and anaerobic active transport in Escherichia coli. Yamamoto TH; Mével-Ninio M; Valentine RC Biochim Biophys Acta; 1973 Sep; 314(3):267-75. PubMed ID: 4270850 [No Abstract] [Full Text] [Related]
50. Labeling of thiols involved in the activity of complex V of the mitochondrial oxidative phosphorylation system. Godinot C; Gautheron DC; Galante Y; Hatefi Y J Biol Chem; 1981 Jul; 256(13):6776-82. PubMed ID: 6453870 [No Abstract] [Full Text] [Related]
51. ATP/ADP alteration as a sign of the oxidative stress development in Escherichia coli cells under antibiotic treatment. Akhova AV; Tkachenko AG FEMS Microbiol Lett; 2014 Apr; 353(1):69-76. PubMed ID: 24612220 [TBL] [Abstract][Full Text] [Related]
52. Studies on the metabolism of ATP by isolated bacterial membranes: formation and metabolism of membrane-bound phosphatidic acid. Weissbach H; Thomas E; Kaback HR Arch Biochem Biophys; 1971 Nov; 147(1):249-54. PubMed ID: 4940043 [No Abstract] [Full Text] [Related]
53. Some contemporary problems in electron-transport-linked adenosine triphosphate synthesis and related processes. Ferguson SJ Biochem Soc Trans; 1977; 5(2):582-8. PubMed ID: 143382 [No Abstract] [Full Text] [Related]
54. A solid state theory of oxidative phosphorylation. Straub KD J Theor Biol; 1974 Apr; 44(2):191-206. PubMed ID: 4829233 [No Abstract] [Full Text] [Related]
55. Binding of adenine nucleotides to the purified 13S coupling factor of bacterial oxidative phosphorylation. Adolfsen R; Moudrianakis EN Arch Biochem Biophys; 1976 Feb; 172(2):425-33. PubMed ID: 1259416 [No Abstract] [Full Text] [Related]
56. Differentiation between mutants of Escherichia coli K defective in oxidative phosphorylation. Kanner BI; Nelson N; Gutnick DL Biochim Biophys Acta; 1975 Sep; 396(3):347-59. PubMed ID: 126079 [TBL] [Abstract][Full Text] [Related]
57. Small angle neutron scattering of Escherichia coli BF1-ATPase. Satre M; Zaccaï G FEBS Lett; 1979 Jun; 102(2):244-8. PubMed ID: 156647 [No Abstract] [Full Text] [Related]
58. Respiratory control, oxidative phosphorylation, respiration, rate of ATP hydrolysis, and ethylene evolution in subcellular particulate fractions from cotyledons of germinating seedlings. Stinson RA; Spencer M Can J Biochem; 1970 May; 48(5):541-6. PubMed ID: 4259116 [No Abstract] [Full Text] [Related]
59. Resistance of oxidative phosphorylation in Escherichia coli to hyperoxia. Brown OR J Bioenerg; 1971 Aug; 2(3):217-20. PubMed ID: 4944309 [No Abstract] [Full Text] [Related]
60. Energy transduction and proton translocation by adenosine triphosphatases. Boyer PD FEBS Lett; 1975 Feb; 50(2):91-4. PubMed ID: 122942 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]