These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 14280837)

  • 1. FORMATION OF FOLATE ENZYMES DURING THE GROWTH CYCLE OF BACTERIA. 3. CHANGES IN TETRAHYDROFOLATE DEHYDROGENASE ACTIVITY DURING THE ACTIVE GROWTH PHASES OF STREPTOCOCCUS THERMOPHILUS AND LACTOBACILLUS ARABINOSUS.
    NURMIKKO V; SOINI J; AAERIMAA O
    Acta Chem Scand; 1965; 19():129-34. PubMed ID: 14280837
    [No Abstract]   [Full Text] [Related]  

  • 2. FORMATION OF FOLATE ENZYMES DURING THE GROWTH CYCLE OF BACTERIA. IV. FORMYLTETRAHYDROFOLATE SYNTHETASE ACTIVITY DURING THE GROWTH OF STREPTOCOCCUS THERMOPHILUS AND STREPTOCOCCUS FAECALIS.
    NURMIKKO V; SOINI J; TAIMINEN S; KYYHKYNEN H
    Acta Chem Scand; 1965; 19():135-42. PubMed ID: 14280838
    [No Abstract]   [Full Text] [Related]  

  • 3. Biosynthesis of dicarboxylic acids by carbon dioxide fixation. V. Further study of the "malic" enzyme of Lactobacillus arabinosus.
    KAUFMAN S; KORKES S; DEL CAMPILLO A
    J Biol Chem; 1951 Sep; 192(1):301-12. PubMed ID: 14917678
    [No Abstract]   [Full Text] [Related]  

  • 4. The inhibition of aspartic acid utilization in the synthesis of the adaptive malic enzyme in Lactobacillus arabinosus.
    IFLAND PW; SHIVE W
    J Biol Chem; 1956 Dec; 223(2):949-57. PubMed ID: 13385242
    [No Abstract]   [Full Text] [Related]  

  • 5. Studies on the regulation of one-carbon metabolism. The effects of folate concentration in the growth medium on the activity of three folate-dependent enzymes in Lactobacillus casei.
    Ohara O; Silber R
    J Biol Chem; 1969 Apr; 244(8):1988-93. PubMed ID: 5253268
    [No Abstract]   [Full Text] [Related]  

  • 6. Growth inhibition of bacteria by synthetic pterins: studies with Streptococcus faecalis, Lactobacillus casei, and Lactobacillus arabinosus.
    DANIEL LJ; NORRIS LC
    J Biol Chem; 1947 Aug; 169(3):689-97. PubMed ID: 20259102
    [No Abstract]   [Full Text] [Related]  

  • 7. Synthesis of a compound with folic acid activity by Lactobacillus arabinosus 17-5.
    MITBANDER VB; SREENIVASAN A
    Arch Mikrobiol; 1954; 21(1):60-8. PubMed ID: 13229324
    [No Abstract]   [Full Text] [Related]  

  • 8. The true nature of the stimulation of the growth of Lactobacillus arabinosus 17-5 by folic acid.
    KOFT BW; SEVAG MG; STEERS E
    J Biol Chem; 1950 Jul; 185(1):9-15. PubMed ID: 15436470
    [No Abstract]   [Full Text] [Related]  

  • 9. [The effect of 4-aminopterin on Lactobacillus arabinosus and Streptococcus lactis: appearance of resistent variants and modification of their synthetic capacities].
    CIMINO S; PREVITERA G
    Arch Sci Biol (Bologna); 1952; 36(5):534-42. PubMed ID: 13017911
    [No Abstract]   [Full Text] [Related]  

  • 10. [Metabolism of vitamin factors during bacterial growth; research on Streptococcus lactis R, Lactobacillus arabinosus and Lactobacillus casei].
    CIMINO S; PREVITERA G
    Arch Sci Biol (Bologna); 1951; 35(3):239-50. PubMed ID: 14847850
    [No Abstract]   [Full Text] [Related]  

  • 11. Lactobacillus plantarum and Streptococcus thermophilus as starter cultures for a donkey milk fermented beverage.
    Turchi B; Pedonese F; Torracca B; Fratini F; Mancini S; Galiero A; Montalbano B; Cerri D; Nuvoloni R
    Int J Food Microbiol; 2017 Sep; 256():54-61. PubMed ID: 28599175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The synthesis of folic acid-like compounds by Lactobacillus arabinosus.
    SARETT HP
    Arch Biochem Biophys; 1951 Dec; 34(2):378-90. PubMed ID: 14904073
    [No Abstract]   [Full Text] [Related]  

  • 13. Failure of folic acid to antagonize sulfanilamide non-competitively in the growth of Lactobacillus arabinosus 17-5.
    SEVAG MG; KOFT BW; STEERS E
    J Biol Chem; 1950 Jul; 185(1):17-25. PubMed ID: 15436471
    [No Abstract]   [Full Text] [Related]  

  • 14. Genome-scale model of Streptococcus thermophilus LMG18311 for metabolic comparison of lactic acid bacteria.
    Pastink MI; Teusink B; Hols P; Visser S; de Vos WM; Hugenholtz J
    Appl Environ Microbiol; 2009 Jun; 75(11):3627-33. PubMed ID: 19346354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of biotin nutrition on carbon dioxide fixation and malic enzyme formation by Lactobacillus arabinosus.
    PLAUT GW
    J Biol Chem; 1961 Jan; 236():61-4. PubMed ID: 13736297
    [No Abstract]   [Full Text] [Related]  

  • 16. [Research on the synthesis of folic acid by Lactobacillus arabinosus].
    CIMINO S; PREVITERA G
    Boll Soc Ital Biol Sper; 1951 Mar; 27(3 bis):491-3. PubMed ID: 14858730
    [No Abstract]   [Full Text] [Related]  

  • 17. OXIDIZED NICOTINAMIDE-ADENINE DINUCLEOTIDE-INDEPENDENT LACTATE DEHYDROGENASES OF LACTOBACILLUS ARABINOSUS 17.5.
    SNOSWELL AM
    Biochim Biophys Acta; 1963 Sep; 77():7-9. PubMed ID: 14078976
    [No Abstract]   [Full Text] [Related]  

  • 18. Inhibition of phenylalanine and tyrosine synthesis on Streptococcus faecalis and Lactobacillus arabinosus by alpha-keto acids.
    HOLDEN JT
    Arch Biochem Biophys; 1956 Mar; 61(1):128-36. PubMed ID: 13292947
    [No Abstract]   [Full Text] [Related]  

  • 19. Ribitol-5-phosphate dehydrogenase from Lactobacillus plantarum.
    GLASER L
    Biochim Biophys Acta; 1963 Apr; 67():525-30. PubMed ID: 13948358
    [No Abstract]   [Full Text] [Related]  

  • 20. Synthesis of a substance exhibiting citrovorum factor activity by Lactobacillus arabinosus 17-5.
    MITBANDER VB; SREENIVASAN A
    Arch Mikrobiol; 1954; 21(1):69-79. PubMed ID: 13229325
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.