These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 14281960)

  • 1. PHOTOREDUCTION OF NAD AND NADP BY CHLOROPHYLLIN A IN THE PRESENCE OF ASCORBATE: REQUIREMENT FOR NADP REDUCTASE.
    VERNON LP; PIETRO AS; LIMBACH DA
    Arch Biochem Biophys; 1965 Jan; 109():92-7. PubMed ID: 14281960
    [No Abstract]   [Full Text] [Related]  

  • 2. Hydrogen gas evolution and carbon dioxide fixation with visible light by chlorophyllin coupled with polyethylene glycol.
    Itoh T; Asada H; Tobioka K; Kodera Y; Matsushima A; Hiroto M; Nishimura H; Kamachi T; Okura I; Inada Y
    Bioconjug Chem; 2000; 11(1):8-13. PubMed ID: 10639079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PURIFICATION OF AN NADP-REDUCTASE AND OF FERREDOXIN DERIVED FROM THE FACULTATIVE PHOTOHETEROTROPH, RHODOPSEUDOMONAS PALUSTRIS.
    YAMANAKA T; KAMEN MD
    Biochem Biophys Res Commun; 1965 Feb; 18():611-6. PubMed ID: 14301467
    [No Abstract]   [Full Text] [Related]  

  • 4. SYNTHESIS AND METABOLISM OF CHOLEST-4-ENE-7-ALPHA,12-ALPHA-DIOL-3-ONE AND 5-BETA-CHOLESTANE-7-ALPHA,12-ALPHA-DIOL-3-ONE. BILE ACIDS AND STEROIDS 153.
    BERSEUS O; DANIELSSON H; KALLNER A
    J Biol Chem; 1965 Jun; 240():2396-401. PubMed ID: 14304843
    [No Abstract]   [Full Text] [Related]  

  • 5. Glutamate synthesis via photoreduction of NADP+ by photostable chlorophyllide coupled with polyethylene-glycol.
    Asada H; Itoh T; Kodera Y; Matsushima A; Hiroto M; Nishimura H; Inada Y
    Biotechnol Bioeng; 2001; 76(1):86-90. PubMed ID: 11400110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP FORMATION ACCOMPANYING PHOTOREDUCTION OF NADP+ BY ASCORBATE-INDOPHENOL IN CHLOROPLAST FRAGMENTS.
    WESSELS JS
    Biochim Biophys Acta; 1964 May; 79():640-2. PubMed ID: 14179470
    [No Abstract]   [Full Text] [Related]  

  • 7. PURIFICATION AND PROPERTIES OF THE ALANINE RACEMASE FROM BACILLUS SUBTILIS.
    DIVEN WF; SCHOLZ JJ; JOHNSTON RB
    Biochim Biophys Acta; 1964 May; 85():322-32. PubMed ID: 14212979
    [No Abstract]   [Full Text] [Related]  

  • 8. THE STEREOSPECIFICITY OF THE HILL REACTION WITH DIPHOSPHOPYRIDINE NUCLEOTIDE.
    AMMERAAL RN; KRAKOW G; VENNESLAND B
    J Biol Chem; 1965 Apr; 240():1824-8. PubMed ID: 14285531
    [No Abstract]   [Full Text] [Related]  

  • 9. THE RELATIONSHIP BETWEEN 3 ALPHA-HYDROXYSTEROID NICOTINAMIDE NUCLEOTIDE COENZYME TRANSHYDROGENATION AND BETA-GLUCURONIDASE IN REGENERATING RAT LIVER.
    WILLIAMS DC
    Biochem Pharmacol; 1964 Apr; 13():559-68. PubMed ID: 14191862
    [No Abstract]   [Full Text] [Related]  

  • 10. ENZYMIC MECHANISMS OF PYRIDINE NUCLEOTIDE REDUCTION IN CHLOROPLASTS.
    SHIN M; ARNON DI
    J Biol Chem; 1965 Mar; 240():1405-11. PubMed ID: 14284756
    [No Abstract]   [Full Text] [Related]  

  • 11. THE METABOLISM OF COUMARIN BY A MICROORGANISM. II. THE REDUCTION OF O-COUMARIC ACID TO MELILOTIC ACID.
    LEVY CC; WEINSTEIN GD
    Biochemistry; 1964 Dec; 3():1944-7. PubMed ID: 14269315
    [No Abstract]   [Full Text] [Related]  

  • 12. ENZYMATIC DETERMINATION AND THIN-LAYER CHROMATOGRAPHY OF BILE ACIDS IN BLOOD.
    IWATA T; YAMASAKI K
    J Biochem; 1964 Nov; 56():424-31. PubMed ID: 14235501
    [No Abstract]   [Full Text] [Related]  

  • 13. ACTION MECHANISM OF THE OLD YELLOW ENZYME.
    NAKAMURA T; YOSHIMURA J; OGURA Y
    J Biochem; 1965 Apr; 57():554-64. PubMed ID: 14318085
    [No Abstract]   [Full Text] [Related]  

  • 14. A NEW PTERIDINE-REQUIRING ENZYME SYSTEM FOR THE OXIDATION OF GLYCERYL ETHERS.
    TIETZ A; LINDBERG M; KENNEDY EP
    J Biol Chem; 1964 Dec; 239():4081-90. PubMed ID: 14247652
    [No Abstract]   [Full Text] [Related]  

  • 15. THE ASCORBIC ACID-DEPENDENT OXIDATION OF REDUCED NICOTINAMIDE-ADENINE DINUCLEOTIDE BY CILIARY AND RETINAL MICROSOMES.
    HEATH H; FIDDICK R
    Biochem J; 1965 Jan; 94(1):114-9. PubMed ID: 14345883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ON THE MECHANISM OF OXIDATIVE PHOSPHORYLATION. 8. FURTHER EVIDENCE FOR DISTINCT TRANSHYDROGENASE REACTIONS IN SUBMITOCHONDRIAL PARTICLES.
    ANDREOLI TE; PHARO RL; SANADI DR
    Biochim Biophys Acta; 1964 Jul; 90():16-23. PubMed ID: 14201153
    [No Abstract]   [Full Text] [Related]  

  • 17. PHOSPHOLIPID--PROTEIN INTERACTION AS A DETERMINANT FOR THE SUBSTRATE SPECIFICITY OF MITOCHONDRIAL NICOTINAMIDE--ADENINE-DINUCLEOTIDE (PHOSPHATE) TRANSHYDROGENASE.
    PESCH LA; PETERSON J
    Biochim Biophys Acta; 1965 Mar; 96():390-4. PubMed ID: 14314380
    [No Abstract]   [Full Text] [Related]  

  • 18. THE PHOTOREDUCTION OF CYTOCHROME C BYCHLOROPLASTS.
    KEISTER DL; SANPIETRO A
    Arch Biochem Biophys; 1963 Oct; 103():45-53. PubMed ID: 14065974
    [No Abstract]   [Full Text] [Related]  

  • 19. ACTION SPECTRUM FOR FERRICYANIDE PHOTOREDUCTION AND REDOX POTENTIAL OF CHLOROPHYLL 683.
    HORIO T; SANPIETRO A
    Proc Natl Acad Sci U S A; 1964 Jun; 51(6):1226-31. PubMed ID: 14218065
    [No Abstract]   [Full Text] [Related]  

  • 20. THE REDUCTION OF NITRATE, NITRITE AND HYDROXYLAMINE TO AMMONIA BY ENZYMES FROM CUCURBITA PEPO L. IN THE PRESENCE OF REDUCED BENZYL VIOLOGEN AS ELECTRON DONOR.
    CRESSWELL CF; HAGEMAN RH; HEWITT EJ; HUCKLESBY DP
    Biochem J; 1965 Jan; 94(1):40-53. PubMed ID: 14342247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.