These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 14283532)

  • 21. Evolutionary convergence in lignin-degrading enzymes.
    Ayuso-Fernández I; Ruiz-Dueñas FJ; Martínez AT
    Proc Natl Acad Sci U S A; 2018 Jun; 115(25):6428-6433. PubMed ID: 29866821
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [FTIR studies of masson pine wood decayed by brown-rot fungi].
    Li GY; Huang AM; Qin TF; Huang LH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Aug; 30(8):2133-6. PubMed ID: 20939323
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood.
    Liers C; Arnstadt T; Ullrich R; Hofrichter M
    FEMS Microbiol Ecol; 2011 Oct; 78(1):91-102. PubMed ID: 21631549
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Performance of wood-rotting fungi-based enzymes on enzymic saccharification of rice straw.
    Tsujiyama S; Ueno H
    J Sci Food Agric; 2013 Aug; 93(11):2841-8. PubMed ID: 23450755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [The formation of ectoenzymes by wood-destroying and wood-inhabiting fungi on various culture media. Part II. Cellulose as C source].
    LYR H
    Arch Mikrobiol; 1959; 34():189-203. PubMed ID: 14419202
    [No Abstract]   [Full Text] [Related]  

  • 26. Comparative production of ligninolytic enzymes by Phanerochaete chrysosporium and Polyporus sanguineus.
    Bajwa PK; Arora DS
    Can J Microbiol; 2009 Dec; 55(12):1397-402. PubMed ID: 20029532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of two mutations that cause defects in the ligninolytic system through an efficient forward genetics in the white-rot agaricomycete Pleurotus ostreatus.
    Nakazawa T; Izuno A; Kodera R; Miyazaki Y; Sakamoto M; Isagi Y; Honda Y
    Environ Microbiol; 2017 Jan; 19(1):261-272. PubMed ID: 27871142
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multidimensional NMR analysis reveals truncated lignin structures in wood decayed by the brown rot basidiomycete Postia placenta.
    Yelle DJ; Wei D; Ralph J; Hammel KE
    Environ Microbiol; 2011 Apr; 13(4):1091-100. PubMed ID: 21261800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative analysis of lignin peroxidase and manganese peroxidase activity on coniferous and deciduous wood using ToF-SIMS.
    MacDonald J; Goacher RE; Abou-Zaid M; Master ER
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8013-20. PubMed ID: 27138198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lignocellulosic residues: biodegradation and bioconversion by fungi.
    Sánchez C
    Biotechnol Adv; 2009; 27(2):185-94. PubMed ID: 19100826
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of Gene Expression during the Onset of Ligninolytic Oxidation by Phanerochaete chrysosporium on Spruce Wood.
    Korripally P; Hunt CG; Houtman CJ; Jones DC; Kitin PJ; Cullen D; Hammel KE
    Appl Environ Microbiol; 2015 Nov; 81(22):7802-12. PubMed ID: 26341198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lignin-modifying enzymes in filamentous basidiomycetes--ecological, functional and phylogenetic review.
    Lundell TK; Mäkelä MR; Hildén K
    J Basic Microbiol; 2010 Feb; 50(1):5-20. PubMed ID: 20175122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fungal community dynamics in relation to substrate quality of decaying Norway spruce ( Picea abies [L.] Karst.) logs in boreal forests.
    Rajala T; Peltoniemi M; Pennanen T; Mäkipää R
    FEMS Microbiol Ecol; 2012 Aug; 81(2):494-505. PubMed ID: 22458543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial mapping of extracellular oxidant production by a white rot basidiomycete on wood reveals details of ligninolytic mechanism.
    Hunt CG; Houtman CJ; Jones DC; Kitin P; Korripally P; Hammel KE
    Environ Microbiol; 2013 Mar; 15(3):956-66. PubMed ID: 23206186
    [TBL] [Abstract][Full Text] [Related]  

  • 35. EFFECT OF PH ON THE GROWTH IN SUBMERGED CULTURE OF SOME WOOD-ROTTING FUNGI.
    CSERI Z
    Acta Microbiol Acad Sci Hung; 1965; 12():55-8. PubMed ID: 14345176
    [No Abstract]   [Full Text] [Related]  

  • 36. The importance of fermentative conditions for the biotechnological production of lignin modifying enzymes from white-rot fungi.
    Martani F; Beltrametti F; Porro D; Branduardi P; Lotti M
    FEMS Microbiol Lett; 2017 Jul; 364(13):. PubMed ID: 28655193
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inactivation of a Pleurotus ostreatus versatile peroxidase-encoding gene (mnp2) results in reduced lignin degradation.
    Salame TM; Knop D; Levinson D; Mabjeesh SJ; Yarden O; Hadar Y
    Environ Microbiol; 2014 Jan; 16(1):265-77. PubMed ID: 24119015
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lignin degradation by selected fungal species.
    Knežević A; Milovanović I; Stajić M; Lončar N; Brčeski I; Vukojević J; Cilerdžić J
    Bioresour Technol; 2013 Jun; 138():117-23. PubMed ID: 23612169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differences in crystalline cellulose modification due to degradation by brown and white rot fungi.
    Hastrup AC; Howell C; Larsen FH; Sathitsuksanoh N; Goodell B; Jellison J
    Fungal Biol; 2012 Oct; 116(10):1052-63. PubMed ID: 23063184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution.
    Janusz G; Pawlik A; Sulej J; Swiderska-Burek U; Jarosz-Wilkolazka A; Paszczynski A
    FEMS Microbiol Rev; 2017 Nov; 41(6):941-962. PubMed ID: 29088355
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.