These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1428532)

  • 1. Continuous flow solid (gel) phase peptide synthesis using unsupported ultra-high load polymers.
    Coffey AF; Johnson T
    Int J Pept Protein Res; 1992 May; 39(5):419-30. PubMed ID: 1428532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous-flow solid (gel)-phase peptide synthesis using unsupported ultrahigh-load polymers: Fmoc/t-butyl strategy.
    Johnson T; Coffey AF
    Pept Res; 1993; 6(6):337-45. PubMed ID: 8292851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvent effects on coupling yields during rapid solid-phase synthesis of CGRP(8-37) employing in situ neutralization.
    Taylor CK; Abel PW; Hulce M; Smith DD
    J Pept Res; 2005 Jan; 65(1):84-9. PubMed ID: 15686538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple column peptide synthesis, Part 2 (1, 2).
    Meldal M; Holm CB; Bojesen G; Jakobsen MH; Holm A
    Int J Pept Protein Res; 1993 Mar; 41(3):250-60. PubMed ID: 8463049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporation of azaglutamine residues into peptides synthesised by the ultra-high load solid (gel)-phase technique.
    Gray CJ; Quibell M; Baggett N; Hammerle T
    Int J Pept Protein Res; 1992 Nov; 40(5):351-62. PubMed ID: 1483829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, construction and application of a fully automated equimolar peptide mixture synthesizer.
    Zuckermann RN; Kerr JM; Siani MA; Banville SC
    Int J Pept Protein Res; 1992 Dec; 40(6):497-506. PubMed ID: 1286933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From micromolar to nanomolar affinity: a systematic approach to identify the binding site of CGRP at the human calcitonin gene-related peptide 1 receptor.
    Rist B; Entzeroth M; Beck-Sickinger AG
    J Med Chem; 1998 Jan; 41(1):117-23. PubMed ID: 9438028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-phase peptide synthesis under continuous-flow conditions.
    Lukas TJ; Prystowsky MB; Erickson BW
    Proc Natl Acad Sci U S A; 1981 May; 78(5):2791-5. PubMed ID: 6942403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct solid-phase synthesis of the beta-amyloid (1-42) peptide using controlled microwave heating.
    Bacsa B; Bosze S; Kappe CO
    J Org Chem; 2010 Mar; 75(6):2103-6. PubMed ID: 20180552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerated protocols for solid-phase peptide synthesis at elevated temperature.
    Rabinovich AK; Rivier JE
    Am Biotechnol Lab; 1994 Jun; 12(7):48, 51. PubMed ID: 7764932
    [No Abstract]   [Full Text] [Related]  

  • 11. Continuous flow synthesis of peptides using a polyacrylamide gel resin (Expansin).
    Mendre C; Sarrade V; Calas B
    Int J Pept Protein Res; 1992 Mar; 39(3):278-84. PubMed ID: 1399268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convergent solid-phase peptide synthesis. VIII. Synthesis, using a photolabile resin, and purification of a methionine-containing protected peptide.
    Lloyd-Williams P; Albericio F; Giralt E
    Int J Pept Protein Res; 1991 Jan; 37(1):58-60. PubMed ID: 2045220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide synthesis on chitin.
    Neugebauer W; Williams RE; Barbier JR; Brzezinski R; Willick G
    Int J Pept Protein Res; 1996 Apr; 47(4):269-75. PubMed ID: 8738652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multigram-scale synthesis of short peptides via a simplified repetitive solution-phase procedure.
    Meneses C; Nicoll SL; Trembleau L
    J Org Chem; 2010 Feb; 75(3):564-9. PubMed ID: 20043628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of cotton as a carrier for solid-phase peptide synthesis.
    Eichler J; Bienert M; Stierandova A; Lebl M
    Pept Res; 1991; 4(5):296-307. PubMed ID: 1802241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid phase peptide synthesis in water VI: evaluation of water-soluble coupling reagents for solid phase peptide synthesis in aqueous media.
    Hojo K; Maeda M; Tanakamaru N; Mochida K; Kawasaki K
    Protein Pept Lett; 2006; 13(2):189-92. PubMed ID: 16472083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fmoc-amino acid chlorides in solid phase synthesis of opioid peptides.
    Sivanandaiah KM; Babu VV; Renukeshwar C
    Int J Pept Protein Res; 1992 Mar; 39(3):201-6. PubMed ID: 1399258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and receptor binding of opioid peptide analogues containing beta3-homo-amino acids.
    WilczyƄska D; Kosson P; Kwasiborska M; Ejchart A; Olma A
    J Pept Sci; 2009 Nov; 15(11):777-82. PubMed ID: 19787815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modifications to the N-terminus but not the C-terminus of calcitonin gene-related peptide(8-37) produce antagonists with increased affinity.
    Smith DD; Saha S; Fang G; Schaffert C; Waugh DJ; Zeng W; Toth G; Hulce M; Abel PW
    J Med Chem; 2003 Jun; 46(12):2427-35. PubMed ID: 12773046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homochiral 4-azalysine building blocks: syntheses and applications in solid-phase chemistry.
    Chhabra SR; Mahajan A; Chan WC
    J Org Chem; 2002 Jun; 67(12):4017-29. PubMed ID: 12054934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.