BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 1428537)

  • 1. Application of arylsulphonyl side-chain protected arginines in solid-phase peptide synthesis based on 9-fluorenylmethoxycarbonyl amino protecting strategy.
    Fischer PM; Retson KV; Tyler MI; Howden ME
    Int J Pept Protein Res; 1992 Jul; 40(1):19-24. PubMed ID: 1428537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Edman degradation sequence analysis of resin-bound peptides synthesized by 9-fluorenylmethoxycarbonyl chemistry.
    Fields CG; VanDrisse VL; Fields GB
    Pept Res; 1993; 6(1):39-47. PubMed ID: 8439735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New mild acid-labile protecting groups for the guanidino function of N alpha-fluorenylmethoxycarbonyl-L-arginine in solid-phase peptide synthesis: 10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-yl, 2-methoxy-10,11-dihydoro-5H-dibenzo[a,d]cyclohepten-5-yl and 5H-dibenzo[a,d]cyclohepten-5-yl groups.
    Noda M; Kiffe M
    J Pept Res; 1997 Nov; 50(5):329-35. PubMed ID: 9401916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid-phase peptide synthesis on polyethylene glycol (PEG) supports using strategies based on the 9-fluorenylmethoxycarbonyl amino protecting group: application of PEGylated peptides in biochemical assays.
    Fischer PM; Zheleva DI
    J Pept Sci; 2002 Sep; 8(9):529-42. PubMed ID: 12371706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis.
    King DS; Fields CG; Fields GB
    Int J Pept Protein Res; 1990 Sep; 36(3):255-66. PubMed ID: 2279849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting NO
    Alhassan M; Kumar A; Lopez J; Albericio F; de la Torre BG
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32586051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfonation of arginine residues as side reaction in Fmoc-peptide synthesis.
    Beck-Sickinger AG; Schnorrenberg G; Metzger J; Jung G
    Int J Pept Protein Res; 1991 Jul; 38(1):25-31. PubMed ID: 1938103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orthogonal protecting groups for N(alpha)-amino and C-terminal carboxyl functions in solid-phase peptide synthesis.
    Albericio F
    Biopolymers; 2000; 55(2):123-39. PubMed ID: 11074410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-phase synthesis of peptides containing phosphoserine using phosphate tert.-butyl protecting group.
    Lacombe JM; Andriamanampisoa F; Pavia AA
    Int J Pept Protein Res; 1990 Sep; 36(3):275-80. PubMed ID: 2279850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p-Nitrobenzyl side-chain protection for solid-phase synthesis.
    Hocker MD; Caldwell CG; Macsata RW; Lyttle MH
    Pept Res; 1995; 8(6):310-15. PubMed ID: 8838413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence-dependent modification of Trp by the Pmc protecting group of Arg during TFA deprotection.
    Stierandová A; Sepetov NF; Nikiforovich GV; Lebl M
    Int J Pept Protein Res; 1994 Jan; 43(1):31-8. PubMed ID: 8138350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainable Peptide Synthesis Enabled by a Transient Protecting Group.
    Knauer S; Koch N; Uth C; Meusinger R; Avrutina O; Kolmar H
    Angew Chem Int Ed Engl; 2020 Jul; 59(31):12984-12990. PubMed ID: 32324944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and application of acid labile anchor groups for the synthesis of peptide amides by Fmoc-solid-phase peptide synthesis.
    Breipohl G; Knolle J; Stüber W
    Int J Pept Protein Res; 1989 Oct; 34(4):262-7. PubMed ID: 2599764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Side reactions in peptide synthesis. V. O-sulfonation of serine and threonine during removal of pmc- and mtr-protecting groups from arginine residues in fmoc-solid phase synthesis].
    Jaeger E; Remmer HA; Jung G; Metzger J; Oberthür W; Rücknagel KP; Schäfer W; Sonnenbichler J; Zetl I
    Biol Chem Hoppe Seyler; 1993 May; 374(5):349-62. PubMed ID: 8338636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunological effects of an arginine side chain contaminating synthetically prepared peptides.
    Schlagel LJ; Bors L; Mitchell GW; King JL; Cao L; Kirk M; Whitaker JN
    Mol Immunol; 1997 Feb; 34(2):185-94. PubMed ID: 9188851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of Sulfotyrosine-Containing Peptides by Incorporating Fluorosulfated Tyrosine Using an Fmoc-Based Solid-Phase Strategy.
    Chen W; Dong J; Li S; Liu Y; Wang Y; Yoon L; Wu P; Sharpless KB; Kelly JW
    Angew Chem Int Ed Engl; 2016 Jan; 55(5):1835-8. PubMed ID: 26696445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incomplete TFA deprotection of N-terminal trityl-asparagine residue in fmoc solid-phase peptide chemistry.
    Friede M; Denery S; Neimark J; Kieffer S; Gausepohl H; Briand JP
    Pept Res; 1992; 5(3):145-7. PubMed ID: 1421802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave-assisted cleavage of Alloc and Allyl Ester protecting groups in solid phase peptide synthesis.
    Wilson KR; Sedberry S; Pescatore R; Vinton D; Love B; Ballard S; Wham BC; Hutchison SK; Williamson EJ
    J Pept Sci; 2016 Oct; 22(10):622-627. PubMed ID: 27501347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Problem of aspartimide formation in Fmoc-based solid-phase peptide synthesis using Dmab group to protect side chain of aspartic acid.
    Ruczyński J; Lewandowska B; Mucha P; Rekowski P
    J Pept Sci; 2008 Mar; 14(3):335-41. PubMed ID: 17975850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Handles for Fmoc solid-phase synthesis of protected peptides.
    Góngora-Benítez M; Tulla-Puche J; Albericio F
    ACS Comb Sci; 2013 May; 15(5):217-28. PubMed ID: 23573835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.