These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 14292222)

  • 1. GENETIC AND ENVIRONMENTAL FACTORS IN DAIRY SIRE EVALUATION. II. USES AND LIMITATIONS OF DEVIATION RECORDS AND THE ROLE OF DAMS.
    BERESKIN B; FREEMAN AE
    J Dairy Sci; 1965 Mar; 48():352-5. PubMed ID: 14292222
    [No Abstract]   [Full Text] [Related]  

  • 2. Optimizing the design of small-sized nucleus breeding programs for dairy cattle with minimal performance recording.
    Kariuki CM; Komen H; Kahi AK; van Arendonk JA
    J Dairy Sci; 2014 Dec; 97(12):7963-74. PubMed ID: 25282422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weighting factors of sire daughter information in international genetic evaluations.
    Fikse WF; Banos G
    J Dairy Sci; 2001 Jul; 84(7):1759-67. PubMed ID: 11467826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FIRST LACTATION CONTEMPORARY COMPARISONS AS INDICATORS OF ENVIRONMENTAL INFLUENCES ON DAUGHTER RECORDS USED FOR SIRE EVALUATION.
    ALLAIRE FR; GAUNT SN
    J Dairy Sci; 1965 Apr; 48():454-61. PubMed ID: 14282441
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparison of international dairy sire evaluations from meta-analysis of national estimated breeding values and direct analysis of individual animal performance records.
    Maltecca C; Bagnato A; Weigel KA
    J Dairy Sci; 2004 Aug; 87(8):2599-605. PubMed ID: 15328284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of time period of data used in international dairy sire evaluations.
    Weigel KA; Banos G
    J Dairy Sci; 1997 Dec; 80(12):3425-30. PubMed ID: 9436125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating genomic selection into dairy cattle breeding programmes: a review.
    Bouquet A; Juga J
    Animal; 2013 May; 7(5):705-13. PubMed ID: 23200196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and crossbreeding parameters for incidence of recorded clinical lameness in New Zealand dairy cattle.
    Chawala AR; Lopez-Villalobos N; Margerison JK; Spelman RJ
    N Z Vet J; 2013 Sep; 61(5):281-5. PubMed ID: 23441959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. National genetic improvement programs for dairy cattle in the United States.
    Wiggans GR
    J Anim Sci; 1991 Sep; 69(9):3853-60. PubMed ID: 1938664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic evaluation of mastitis in dairy cattle using linear models, threshold models, and survival analysis: a simulation study.
    Carlén E; Emanuelson U; Strandberg E
    J Dairy Sci; 2006 Oct; 89(10):4049-57. PubMed ID: 16960081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Economic trade-offs between genetic improvement and longevity in dairy cattle.
    De Vries A
    J Dairy Sci; 2017 May; 100(5):4184-4192. PubMed ID: 28215896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic prediction for calving ease in the United States: data, models, and use by the dairy industry.
    Berger PJ
    J Dairy Sci; 1994 Apr; 77(4):1146-53. PubMed ID: 8201049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of correction for heterogeneity of variance on bias and accuracy of breeding value estimation for Dutch dairy cattle.
    van der Werf JH; Meuwissen TH; de Jong G
    J Dairy Sci; 1994 Oct; 77(10):3174-84. PubMed ID: 7836606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benefits of cooperation between breeding programs in the presence of genotype by environment interaction.
    Mulder HA; Bijma P
    J Dairy Sci; 2006 May; 89(5):1727-39. PubMed ID: 16606744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation of a routine genetic evaluation for longevity based on survival analysis techniques in dairy cattle populations in Switzerland.
    Vukasinovic N; Moll J; Casanova L
    J Dairy Sci; 2001 Sep; 84(9):2073-80. PubMed ID: 11573788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic parameters for anovulation and pregnancy loss in dairy cattle.
    Bamber RL; Shook GE; Wiltbank MC; Santos JE; Fricke PM
    J Dairy Sci; 2009 Nov; 92(11):5739-53. PubMed ID: 19841234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling pedigree accuracy and uncertain parentage in single-step genomic evaluations of simulated and US Holstein datasets.
    Bradford HL; Masuda Y; Cole JB; Misztal I; VanRaden PM
    J Dairy Sci; 2019 Mar; 102(3):2308-2318. PubMed ID: 30639024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic selection strategies in a small dairy cattle population evaluated for genetic gain and profit.
    Thomasen JR; Egger-Danner C; Willam A; Guldbrandtsen B; Lund MS; Sørensen AC
    J Dairy Sci; 2014; 97(1):458-70. PubMed ID: 24239076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. National single-step genomic method that integrates multi-national genomic information.
    Vandenplas J; Spehar M; Potocnik K; Gengler N; Gorjanc G
    J Dairy Sci; 2017 Jan; 100(1):465-478. PubMed ID: 27865486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of cow reproduction in the pureline foundation phase of the Canadian National Dairy Cattle Breeding Project.
    Vesely JA; McAllister AJ; Lee AJ; Batra TR; Darisse JF; Roy GL; Winter KA
    J Dairy Sci; 1983 Apr; 66(4):867-73. PubMed ID: 6682866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.