BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1429441)

  • 1. Phenotypes of sphingolipid-dependent strains of Saccharomyces cerevisiae.
    Patton JL; Srinivasan B; Dickson RC; Lester RL
    J Bacteriol; 1992 Nov; 174(22):7180-4. PubMed ID: 1429441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dominant suppressor mutation bypasses the sphingolipid requirement for growth of Saccharomyces cells at low pH: role of the CWP2 gene.
    Skrzypek M; Lester RL; Spielmann P; Zingg N; Shelling J; Dickson RC
    Curr Genet; 2000 Nov; 38(4):191-201. PubMed ID: 11126778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutant strains of Saccharomyces cerevisiae lacking sphingolipids synthesize novel inositol glycerophospholipids that mimic sphingolipid structures.
    Lester RL; Wells GB; Oxford G; Dickson RC
    J Biol Chem; 1993 Jan; 268(2):845-56. PubMed ID: 8419362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A suppressor gene that enables Saccharomyces cerevisiae to grow without making sphingolipids encodes a protein that resembles an Escherichia coli fatty acyltransferase.
    Nagiec MM; Wells GB; Lester RL; Dickson RC
    J Biol Chem; 1993 Oct; 268(29):22156-63. PubMed ID: 8408076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rescue of cell growth by sphingosine with disruption of lipid microdomain formation in Saccharomyces cerevisiae deficient in sphingolipid biosynthesis.
    Tani M; Kihara A; Igarashi Y
    Biochem J; 2006 Feb; 394(Pt 1):237-42. PubMed ID: 16225461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism and selected functions of sphingolipids in the yeast Saccharomyces cerevisiae.
    Dickson RC; Lester RL
    Biochim Biophys Acta; 1999 Jun; 1438(3):305-21. PubMed ID: 10366774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of mutant Saccharomyces cerevisiae strains that survive without sphingolipids.
    Dickson RC; Wells GB; Schmidt A; Lester RL
    Mol Cell Biol; 1990 May; 10(5):2176-81. PubMed ID: 2183021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sphingolipid long-chain-base auxotrophs of Saccharomyces cerevisiae: genetics, physiology, and a method for their selection.
    Pinto WJ; Srinivasan B; Shepherd S; Schmidt A; Dickson RC; Lester RL
    J Bacteriol; 1992 Apr; 174(8):2565-74. PubMed ID: 1556075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of enzymatic synthesis of sphingolipid long-chain bases in Saccharomyces cerevisiae: mutant strains exhibiting long-chain-base auxotrophy are deficient in serine palmitoyltransferase activity.
    Pinto WJ; Wells GW; Lester RL
    J Bacteriol; 1992 Apr; 174(8):2575-81. PubMed ID: 1556076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppressor gene analysis reveals an essential role for sphingolipids in transport of glycosylphosphatidylinositol-anchored proteins in Saccharomyces cerevisiae.
    Skrzypek M; Lester RL; Dickson RC
    J Bacteriol; 1997 Mar; 179(5):1513-20. PubMed ID: 9045807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syringomycin action gene SYR2 is essential for sphingolipid 4-hydroxylation in Saccharomyces cerevisiae.
    Grilley MM; Stock SD; Dickson RC; Lester RL; Takemoto JY
    J Biol Chem; 1998 May; 273(18):11062-8. PubMed ID: 9556590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytosphingosine as a specific inhibitor of growth and nutrient import in Saccharomyces cerevisiae.
    Chung N; Mao C; Heitman J; Hannun YA; Obeid LM
    J Biol Chem; 2001 Sep; 276(38):35614-21. PubMed ID: 11468289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functions and metabolism of sphingolipids in Saccharomyces cerevisiae.
    Dickson RC; Sumanasekera C; Lester RL
    Prog Lipid Res; 2006 Nov; 45(6):447-65. PubMed ID: 16730802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast Sphingolipid-Enriched Domains and Membrane Compartments in the Absence of Mannosyldiinositolphosphorylceramide.
    Bento-Oliveira A; Santos FC; Marquês JT; Paulo PMR; Korte T; Herrmann A; Marinho HS; de Almeida RFM
    Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32517183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of phosphorylated sphingolipid long-chain bases reveals potential roles in heat stress and growth control in Saccharomyces.
    Skrzypek MS; Nagiec MM; Lester RL; Dickson RC
    J Bacteriol; 1999 Feb; 181(4):1134-40. PubMed ID: 9973338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perturbation of sphingolipid metabolism induces endoplasmic reticulum stress-mediated mitochondrial apoptosis in budding yeast.
    Kajiwara K; Muneoka T; Watanabe Y; Karashima T; Kitagaki H; Funato K
    Mol Microbiol; 2012 Dec; 86(5):1246-61. PubMed ID: 23062268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppressors of the Ca(2+)-sensitive yeast mutant (csg2) identify genes involved in sphingolipid biosynthesis. Cloning and characterization of SCS1, a gene required for serine palmitoyltransferase activity.
    Zhao C; Beeler T; Dunn T
    J Biol Chem; 1994 Aug; 269(34):21480-8. PubMed ID: 8063782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The isolation and characterization of a mutant strain of Saccharomyces cerevisiae that requires a long chain base for growth and for synthesis of phosphosphingolipids.
    Wells GB; Lester RL
    J Biol Chem; 1983 Sep; 258(17):10200-3. PubMed ID: 6350287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous structural replacement of the sphingoid long-chain base and sterol in budding yeast.
    Kono Y; Ishibashi Y; Fukuda S; Higuchi T; Tani M
    FEBS J; 2023 Dec; 290(23):5605-5627. PubMed ID: 37690108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a novel, potent, and specific inhibitor of serine palmitoyltransferase.
    Zweerink MM; Edison AM; Wells GB; Pinto W; Lester RL
    J Biol Chem; 1992 Dec; 267(35):25032-8. PubMed ID: 1460005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.