BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 1429509)

  • 21. Characterization of Ruminococcus albus cellodextrin phosphorylase and identification of a key phenylalanine residue for acceptor specificity and affinity to the phosphate group.
    Sawano T; Saburi W; Hamura K; Matsui H; Mori H
    FEBS J; 2013 Sep; 280(18):4463-73. PubMed ID: 23802549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification and properties of Cellvibrio gilvus cellobiose phosphorylase.
    Sasaki T; Tanaka T; Nakagawa S; Kainuma K
    Biochem J; 1983 Mar; 209(3):803-7. PubMed ID: 6223623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substrate-induced activation of maltose phosphorylase: interaction with the anomeric hydroxyl group of alpha-maltose and alpha-D-glucose controls the enzyme's glucosyltransferase activity.
    Tsumuraya Y; Brewer CF; Hehre EJ
    Arch Biochem Biophys; 1990 Aug; 281(1):58-65. PubMed ID: 2143366
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorolytic Reaction of Cellvibrio gilvus Cellobiose Phosphorylase.
    Kitaoka M; Sasaki T; Taniguchi H
    Biosci Biotechnol Biochem; 1992 Jan; 56(4):652-5. PubMed ID: 27280665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The binding of 2-deoxy-D-glucose 6-phosphate to glycogen phosphorylase b: kinetic and crystallographic studies.
    Oikonomakos NG; Zographos SE; Johnson LN; Papageorgiou AC; Acharya KR
    J Mol Biol; 1995 Dec; 254(5):900-17. PubMed ID: 7500360
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The stereochemical course of the reaction mechanism of trehalose phosphorylase from Schizophyllum commune.
    Eis C; Albert M; Dax K; Nidetzky B
    FEBS Lett; 1998 Dec; 440(3):440-3. PubMed ID: 9872418
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellodextrin phosphorylase from Ruminiclostridium thermocellum: X-ray crystal structure and substrate specificity analysis.
    O'Neill EC; Pergolizzi G; Stevenson CEM; Lawson DM; Nepogodiev SA; Field RA
    Carbohydr Res; 2017 Nov; 451():118-132. PubMed ID: 28760417
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alpha-retaining glucosyl transfer catalysed by trehalose phosphorylase from Schizophyllum commune: mechanistic evidence obtained from steady-state kinetic studies with substrate analogues and inhibitors.
    Nidetzky B; Eis C
    Biochem J; 2001 Dec; 360(Pt 3):727-36. PubMed ID: 11736665
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pushing the boundaries of phosphorylase cascade reaction for cellobiose production I: Kinetic model development.
    Sigg A; Klimacek M; Nidetzky B
    Biotechnol Bioeng; 2024 Feb; 121(2):580-592. PubMed ID: 37983971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic mechanism of mannan in a ruminal bacterium, Ruminococcus albus, involving two mannoside phosphorylases and cellobiose 2-epimerase: discovery of a new carbohydrate phosphorylase, β-1,4-mannooligosaccharide phosphorylase.
    Kawahara R; Saburi W; Odaka R; Taguchi H; Ito S; Mori H; Matsui H
    J Biol Chem; 2012 Dec; 287(50):42389-99. PubMed ID: 23093406
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 2-O-α-D-glucosylglycerol phosphorylase from Bacillus selenitireducens MLS10 possessing hydrolytic activity on β-D-glucose 1-phosphate.
    Nihira T; Saito Y; Ohtsubo K; Nakai H; Kitaoka M
    PLoS One; 2014; 9(1):e86548. PubMed ID: 24466148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enzymatic Synthesis of 1,5-Anhydro-4-
    Kajiki T; Yoshinaga K; Komba S; Kitaoka M
    J Appl Glycosci (1999); 2017; 64(4):91-97. PubMed ID: 34354501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Small-molecule glucosylation by sucrose phosphorylase: structure-activity relationships for acceptor substrates revisited.
    Luley-Goedl C; Nidetzky B
    Carbohydr Res; 2010 Jul; 345(10):1492-6. PubMed ID: 20416864
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reaction mechanism of chitobiose phosphorylase from Vibrio proteolyticus: identification of family 36 glycosyltransferase in Vibrio.
    Honda Y; Kitaoka M; Hayashi K
    Biochem J; 2004 Jan; 377(Pt 1):225-32. PubMed ID: 13678418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochemical properties of GH94 cellodextrin phosphorylase THA_1941 from a thermophilic eubacterium Thermosipho africanus TCF52B with cellobiose phosphorylase activity.
    Wu Y; Mao G; Fan H; Song A; Zhang YP; Chen H
    Sci Rep; 2017 Jul; 7(1):4849. PubMed ID: 28687766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of Bacillus selenitireducens MLS10 maltose phosphorylase possessing synthetic ability for branched α-D-glucosyl trisaccharides.
    Nihira T; Saito Y; Kitaoka M; Otsubo K; Nakai H
    Carbohydr Res; 2012 Oct; 360():25-30. PubMed ID: 22940176
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Construction of cellobiose phosphorylase variants with broadened acceptor specificity towards anomerically substituted glucosides.
    De Groeve MR; Remmery L; Van Hoorebeke A; Stout J; Desmet T; Savvides SN; Soetaert W
    Biotechnol Bioeng; 2010 Oct; 107(3):413-20. PubMed ID: 20517986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucose analogue inhibitors of glycogen phosphorylase: the design of potential drugs for diabetes.
    Martin JL; Veluraja K; Ross K; Johnson LN; Fleet GW; Ramsden NG; Bruce I; Orchard MG; Oikonomakos NG; Papageorgiou AC
    Biochemistry; 1991 Oct; 30(42):10101-16. PubMed ID: 1931942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel transglucosylating reaction of sucrose phosphorylase to carboxylic compounds such as benzoic acid.
    Sugimoto K; Nomura K; Nishiura H; Ohdan K; Ohdan K; Hayashi H; Kuriki T
    J Biosci Bioeng; 2007 Jul; 104(1):22-9. PubMed ID: 17697979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. UTILIZATION OF CELLULOSE OLIGOSACCHARIDES BY CELLVIBRIO GILVUS.
    SCHAFER ML; KING KW
    J Bacteriol; 1965 Jan; 89(1):113-6. PubMed ID: 14255649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.