These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 1429533)

  • 21. Kinetics and energetics of ligand binding determined by microcalorimetry: insights into active site mobility in a psychrophilic alpha-amylase.
    D'Amico S; Sohier JS; Feller G
    J Mol Biol; 2006 May; 358(5):1296-304. PubMed ID: 16580683
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated docking of maltose, 2-deoxymaltose, and maltotetraose into the soybean beta-amylase active site.
    Laederach A; Dowd MK; Coutinho PM; Reilly PJ
    Proteins; 1999 Nov; 37(2):166-75. PubMed ID: 10584063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic model for the co-action of beta-amylase and debranching enzymes in the production of maltose.
    Jiahua Z
    Biotechnol Bioeng; 1999 Mar; 62(5):618-22. PubMed ID: 10099571
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A study of the mechanism of action of Taka-amylase A1 on linear oligosaccharides by product analysis and computer simulation.
    Suganuma T; Matsuno R; Ohnishi M; Hiromi K
    J Biochem; 1978 Aug; 84(2):293-316. PubMed ID: 308947
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unexpected mode of action of sweet potato β-amylase on maltooligomer substrates.
    Fazekas E; Szabó K; Kandra L; Gyémánt G
    Biochim Biophys Acta; 2013 Oct; 1834(10):1976-81. PubMed ID: 23831155
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetics of hydrolysis of dansyl peptide substrates by thermolysin: analysis of fluorescence changes and determination of steady-state kinetic parameters.
    Yang JJ; Van Wart HE
    Biochemistry; 1994 May; 33(21):6508-15. PubMed ID: 8204585
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of maltal hydration catalyzed by beta-amylase: role of protein structure in controlling the steric outcome of reactions catalyzed by a glycosylase.
    Kitahata S; Chiba S; Brewer CF; Hehre EJ
    Biochemistry; 1991 Jul; 30(27):6769-75. PubMed ID: 1829637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two sulfhydryl groups near the active site of soybean beta-amylase.
    Mikami B; Nomura K; Morita Y
    Biosci Biotechnol Biochem; 1994 Jan; 58(1):126-32. PubMed ID: 7764509
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of raw starch-digesting Bacillus cereus beta-amylase complexed with maltose.
    Mikami B; Adachi M; Kage T; Sarikaya E; Nanmori T; Shinke R; Utsumi S
    Biochemistry; 1999 Jun; 38(22):7050-61. PubMed ID: 10353816
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A lipase-inhibiting protein from lipoxygenase-deficient soybean seeds.
    Satouchi K; Kodama Y; Murakami K; Tanaka T; Iwamoto H; Ishimoto M
    Biosci Biotechnol Biochem; 2002 Oct; 66(10):2154-60. PubMed ID: 12450126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ES complexes of Aeromonas aminopeptidase: direct observation by stopped-flow fluorescence.
    Auld DS; Prescott JM
    Biochem Biophys Res Commun; 1983 Mar; 111(3):946-51. PubMed ID: 6838596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structures of soybean beta-amylase reacted with beta-maltose and maltal: active site components and their apparent roles in catalysis.
    Mikami B; Degano M; Hehre EJ; Sacchettini JC
    Biochemistry; 1994 Jun; 33(25):7779-87. PubMed ID: 8011643
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monte Carlo simulation of multiple attack mechanism of beta-amylase-catalyzed reaction.
    Nakatani H
    Biopolymers; 1997 Dec; 42(7):831-6. PubMed ID: 10904554
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular mimicry of substrate oxygen atoms by water molecules in the beta-amylase active site.
    Pujadas G; Palau J
    Protein Sci; 2001 Aug; 10(8):1645-57. PubMed ID: 11468361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modifing Aspergillus Oryzae S2 amylase substrate specificity and thermostability through its tetramerisation using biochemical and in silico studies and stabilization.
    Sahnoun M; Jemli S; Trabelsi S; Bejar S
    Int J Biol Macromol; 2018 Oct; 117():483-492. PubMed ID: 29800658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Steady-state kinetics and tryptophan fluorescence properties of halohydrin dehalogenase from Agrobacterium radiobacter. Roles of W139 and W249 in the active site and halide-induced conformational change.
    Tang L; van Merode AE; Lutje Spelberg JH; Fraaije MW; Janssen DB
    Biochemistry; 2003 Dec; 42(47):14057-65. PubMed ID: 14636074
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of modification of sulfhydryl groups in soybean beta-amylase on the interaction with substrate and inhibitors.
    Nomura K; Mikami B; Nagao Y; Morita Y
    J Biochem; 1987 Aug; 102(2):333-40. PubMed ID: 2444582
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutations of Trp275 and Trp397 altered the binding selectivity of Vibrio carchariae chitinase A.
    Suginta W; Songsiriritthigul C; Kobdaj A; Opassiri R; Svasti J
    Biochim Biophys Acta; 2007 Aug; 1770(8):1151-60. PubMed ID: 17490819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of beta-amylase activity by a fluorimetric 2-p-toluidinylnaphthalene-6-sulfonate flow-injection analysis (2, 6-TNS-FIA) method, using amylose and amylopectin as substrates.
    Batlle N; Carbonell JV; Sendra JM
    Biotechnol Bioeng; 2000 Jan; 67(2):127-33. PubMed ID: 10592509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple attack in porcine pancreatic alpha-amylase-catalyzed hydrolysis of amylose studied with a fluorescence probe.
    Kondo H; Nakatani H; Hiromi K; Matsuno R
    J Biochem; 1978 Aug; 84(2):403-17. PubMed ID: 29891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.