These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 1429571)
1. The identification of a domain in Escherichia coli elongation factor Tu that interacts with elongation factor Ts. Hwang YW; Carter M; Miller DL J Biol Chem; 1992 Nov; 267(31):22198-205. PubMed ID: 1429571 [TBL] [Abstract][Full Text] [Related]
2. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA. Navratil T; Spremulli LL Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of elongation factor (EF)-Ts-catalyzed nucleotide exchange in EF-Tu. Contribution of contacts at the guanine base. Wieden HJ; Gromadski K; Rodnin D; Rodnina MV J Biol Chem; 2002 Feb; 277(8):6032-6. PubMed ID: 11744709 [TBL] [Abstract][Full Text] [Related]
4. Mutagenesis of bacterial elongation factor Tu at lysine 136. A conserved amino acid in GTP regulatory proteins. Hwang YW; Sanchez A; Miller DL J Biol Chem; 1989 May; 264(14):8304-9. PubMed ID: 2498311 [TBL] [Abstract][Full Text] [Related]
5. Structure and importance of the dimerization domain in elongation factor Ts from Thermus thermophilus. Jiang Y; Nock S; Nesper M; Sprinzl M; Sigler PB Biochemistry; 1996 Aug; 35(32):10269-78. PubMed ID: 8756682 [TBL] [Abstract][Full Text] [Related]
6. Elongation factor Ts directly facilitates the formation and disassembly of the Escherichia coli elongation factor Tu·GTP·aminoacyl-tRNA ternary complex. Burnett BJ; Altman RB; Ferrao R; Alejo JL; Kaur N; Kanji J; Blanchard SC J Biol Chem; 2013 May; 288(19):13917-28. PubMed ID: 23539628 [TBL] [Abstract][Full Text] [Related]
7. Structural outline of the detailed mechanism for elongation factor Ts-mediated guanine nucleotide exchange on elongation factor Tu. Thirup SS; Van LB; Nielsen TK; Knudsen CR J Struct Biol; 2015 Jul; 191(1):10-21. PubMed ID: 26073967 [TBL] [Abstract][Full Text] [Related]
8. Roles of residues in mammalian mitochondrial elongation factor Ts in the interaction with mitochondrial and bacterial elongation factor Tu. Zhang Y; Spremulli LL J Biol Chem; 1998 Oct; 273(43):28142-8. PubMed ID: 9774433 [TBL] [Abstract][Full Text] [Related]
9. The structure of the Escherichia coli EF-Tu.EF-Ts complex at 2.5 A resolution. Kawashima T; Berthet-Colominas C; Wulff M; Cusack S; Leberman R Nature; 1996 Feb; 379(6565):511-8. PubMed ID: 8596629 [TBL] [Abstract][Full Text] [Related]
10. The importance of P-loop and domain movements in EF-Tu for guanine nucleotide exchange. Dahl LD; Wieden HJ; Rodnina MV; Knudsen CR J Biol Chem; 2006 Jul; 281(30):21139-21146. PubMed ID: 16717093 [TBL] [Abstract][Full Text] [Related]
11. Limited proteolysis and amino acid replacements in the effector region of Thermus thermophilus elongation factor Tu. Zeidler W; Schirmer NK; Egle C; Ribeiro S; Kreutzer R; Sprinzl M Eur J Biochem; 1996 Jul; 239(2):265-71. PubMed ID: 8706729 [TBL] [Abstract][Full Text] [Related]
12. Effects of domain exchanges between Escherichia coli and mammalian mitochondrial EF-Tu on interactions with guanine nucleotides, aminoacyl-tRNA and ribosomes. Bullard JM; Cai YC; Zhang Y; Spremulli LL Biochim Biophys Acta; 1999 Jul; 1446(1-2):102-14. PubMed ID: 10395923 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of the EF-Tu.EF-Ts complex from Thermus thermophilus. Wang Y; Jiang Y; Meyering-Voss M; Sprinzl M; Sigler PB Nat Struct Biol; 1997 Aug; 4(8):650-6. PubMed ID: 9253415 [TBL] [Abstract][Full Text] [Related]
14. The crystal structure of elongation factor G complexed with GDP, at 2.7 A resolution. Czworkowski J; Wang J; Steitz TA; Moore PB EMBO J; 1994 Aug; 13(16):3661-8. PubMed ID: 8070396 [TBL] [Abstract][Full Text] [Related]
15. Small clusters of divergent amino acids surrounding the effector domain mediate the varied phenotypes of EF-G and LepA expression. Yaskowiak ES; March PE Mol Microbiol; 1995 Mar; 15(5):943-53. PubMed ID: 7596295 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the functional consequences of lethal mutations in mitochondrial translational elongation factors. Akama K; Christian BE; Jones CN; Ueda T; Takeuchi N; Spremulli LL Biochim Biophys Acta; 2010; 1802(7-8):692-8. PubMed ID: 20435138 [TBL] [Abstract][Full Text] [Related]
18. The C-terminal Helix of Pseudomonas aeruginosa Elongation Factor Ts Tunes EF-Tu Dynamics to Modulate Nucleotide Exchange. De Laurentiis EI; Mercier E; Wieden HJ J Biol Chem; 2016 Oct; 291(44):23136-23148. PubMed ID: 27624934 [TBL] [Abstract][Full Text] [Related]
19. Site-directed mutagenesis of Thermus thermophilus elongation factor Tu. Replacement of His85, Asp81 and Arg300. Zeidler W; Egle C; Ribeiro S; Wagner A; Katunin V; Kreutzer R; Rodnina M; Wintermeyer W; Sprinzl M Eur J Biochem; 1995 May; 229(3):596-604. PubMed ID: 7758452 [TBL] [Abstract][Full Text] [Related]
20. The solution structure of the guanine nucleotide exchange domain of human elongation factor 1beta reveals a striking resemblance to that of EF-Ts from Escherichia coli. Pérez JM; Siegal G; Kriek J; Hård K; Dijk J; Canters GW; Möller W Structure; 1999 Feb; 7(2):217-26. PubMed ID: 10368288 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]