BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 1429640)

  • 1. Energetics of lectin-carbohydrate binding. A microcalorimetric investigation of concanavalin A-oligomannoside complexation.
    Williams BA; Chervenak MC; Toone EJ
    J Biol Chem; 1992 Nov; 267(32):22907-11. PubMed ID: 1429640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calorimetric analysis of the binding of lectins with overlapping carbohydrate-binding ligand specificities.
    Chervenak MC; Toone EJ
    Biochemistry; 1995 Apr; 34(16):5685-95. PubMed ID: 7727428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of multivalent carbohydrates to concanavalin A and Dioclea grandiflora lectin. Thermodynamic analysis of the "multivalency effect".
    Dam TK; Roy R; Das SK; Oscarson S; Brewer CF
    J Biol Chem; 2000 May; 275(19):14223-30. PubMed ID: 10799500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of the fine saccharide-binding specificity of Dioclea grandiflora lectin and concanavalin A.
    Gupta D; Oscarson S; Raju TS; Stanley P; Toone EJ; Brewer CF
    Eur J Biochem; 1996 Dec; 242(2):320-6. PubMed ID: 8973650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of lectin-carbohydrate interactions. Titration microcalorimetry measurements of the binding of N-linked carbohydrates and ovalbumin to concanavalin A.
    Mandal DK; Kishore N; Brewer CF
    Biochemistry; 1994 Feb; 33(5):1149-56. PubMed ID: 8110746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity of C-glycoside complexation by mannose/glucose specific lectins.
    Weatherman RV; Mortell KH; Chervenak M; Kiessling LL; Toone EJ
    Biochemistry; 1996 Mar; 35(11):3619-24. PubMed ID: 8639514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negative cooperativity associated with binding of multivalent carbohydrates to lectins. Thermodynamic analysis of the "multivalency effect".
    Dam TK; Roy R; Pagé D; Brewer CF
    Biochemistry; 2002 Jan; 41(4):1351-8. PubMed ID: 11802737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics of lectin-carbohydrate interactions. Binding of the core trimannoside of asparagine-linked carbohydrates and deoxy analogs to concanavalin A.
    Gupta D; Dam TK; Oscarson S; Brewer CF
    J Biol Chem; 1997 Mar; 272(10):6388-92. PubMed ID: 9045661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diocleinae lectins are a group of proteins with conserved binding sites for the core trimannoside of asparagine-linked oligosaccharides and differential specificities for complex carbohydrates.
    Dam TK; Cavada BS; Grangeiro TB; Santos CF; de Sousa FA; Oscarson S; Brewer CF
    J Biol Chem; 1998 May; 273(20):12082-8. PubMed ID: 9575151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of a tri- and tetradeoxy analogue of methyl 3,6-di-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside for investigation of the binding site of various plant lectins.
    Oscarson S; Svahnberg P
    Carbohydr Res; 1998 Jun; 309(2):207-12. PubMed ID: 9741077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of monosaccharide binding to concanavalin A, pea (Pisum sativum) lectin, and lentil (Lens culinaris) lectin.
    Schwarz FP; Puri KD; Bhat RG; Surolia A
    J Biol Chem; 1993 Apr; 268(11):7668-77. PubMed ID: 8463297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics of binding of the core trimannoside of asparagine-linked carbohydrates and deoxy analogs to Dioclea grandiflora lectin.
    Dam TK; Oscarson S; Brewer CF
    J Biol Chem; 1998 Dec; 273(49):32812-7. PubMed ID: 9830027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic binding parameters of individual epitopes of multivalent carbohydrates to concanavalin a as determined by "reverse" isothermal titration microcalorimetry.
    Dam TK; Roy R; Pagé D; Brewer CF
    Biochemistry; 2002 Jan; 41(4):1359-63. PubMed ID: 11802738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic binding studies of lectins from the diocleinae subtribe to deoxy analogs of the core trimannoside of asparagine-linked oligosaccharides.
    Dam TK; Cavada BS; Grangeiro TB; Santos CF; Ceccatto VM; de Sousa FA; Oscarson S; Brewer CF
    J Biol Chem; 2000 May; 275(21):16119-26. PubMed ID: 10747944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential solvation of "core" trimannoside complexes of the Dioclea grandiflora lectin and concanavalin A detected by primary solvent isotope effects in isothermal titration microcalorimetry.
    Dam TK; Oscarson S; Sacchettini JC; Brewer CF
    J Biol Chem; 1998 Dec; 273(49):32826-32. PubMed ID: 9830029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of the binding specificity of concanavalin A. Nature of the extended binding site for asparagine-linked carbohydrates.
    Mandal DK; Bhattacharyya L; Koenig SH; Brown RD; Oscarson S; Brewer CF
    Biochemistry; 1994 Feb; 33(5):1157-62. PubMed ID: 8110747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of substituent on the thermodynamics of D-glucopyranoside binding to concanavalin A, pea (Pisum sativum) lectin and lentil (Lens culinaris) lectin.
    Schwarz FP; Misquith S; Surolia A
    Biochem J; 1996 May; 316 ( Pt 1)(Pt 1):123-9. PubMed ID: 8645193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in the binding affinities of dimeric concanavalin A (including acetyl and succinyl derivatives) and tetrameric concanavalin A with large oligomannose-type glycopeptides.
    Mandal DK; Brewer CF
    Biochemistry; 1993 May; 32(19):5116-20. PubMed ID: 8494887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray crystal structure of a pea lectin-trimannoside complex at 2.6 A resolution.
    Rini JM; Hardman KD; Einspahr H; Suddath FL; Carver JP
    J Biol Chem; 1993 May; 268(14):10126-32. PubMed ID: 8486683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR investigations of protein-carbohydrate interactions: studies on the relevance of Trp/Tyr variations in lectin binding sites as deduced from titration microcalorimetry and NMR studies on hevein domains. Determination of the NMR structure of the complex between pseudohevein and N,N',N"-triacetylchitotriose.
    Asensio JL; Siebert HC; von Der Lieth CW; Laynez J; Bruix M; Soedjanaamadja UM; Beintema JJ; Cañada FJ; Gabius HJ; Jiménez-Barbero J
    Proteins; 2000 Aug; 40(2):218-36. PubMed ID: 10842338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.