BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1429651)

  • 1. Subunit folding and alpha delta heterodimer formation in the assembly of the nicotinic acetylcholine receptor. Comparison of the mouse and human alpha subunits.
    Chavez RA; Maloof J; Beeson D; Newsom-Davis J; Hall ZW
    J Biol Chem; 1992 Nov; 267(32):23028-34. PubMed ID: 1429651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly of the nicotinic acetylcholine receptor. The first transmembrane domains of truncated alpha and delta subunits are required for heterodimer formation in vivo.
    Wang ZZ; Hardy SF; Hall ZW
    J Biol Chem; 1996 Nov; 271(44):27575-84. PubMed ID: 8910344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-glycosylation at the conserved sites ensures the expression of properly folded functional ACh receptors.
    Gehle VM; Walcott EC; Nishizaki T; Sumikawa K
    Brain Res Mol Brain Res; 1997 May; 45(2):219-29. PubMed ID: 9149096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sequence in the main cytoplasmic loop of the alpha subunit is required for assembly of mouse muscle nicotinic acetylcholine receptor.
    Yu XM; Hall ZW
    Neuron; 1994 Jul; 13(1):247-55. PubMed ID: 8043279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino- and carboxyl-terminal domains specify the identity of the delta subunit in assembly of the mouse muscle nicotinic acetylcholine receptor.
    Yu XM; Hall ZW
    Mol Pharmacol; 1994 Nov; 46(5):964-9. PubMed ID: 7969087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly of mutant subunits of the nicotinic acetylcholine receptor lacking the conserved disulfide loop structure.
    Sumikawa K; Gehle VM
    J Biol Chem; 1992 Mar; 267(9):6286-90. PubMed ID: 1556136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of a ligand-binding site for the acetylcholine receptor in vitro.
    Shtrom SS; Hall ZW
    J Biol Chem; 1996 Oct; 271(41):25506-14. PubMed ID: 8810322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly of the mammalian muscle acetylcholine receptor in transfected COS cells.
    Gu Y; Forsayeth JR; Verrall S; Yu XM; Hall ZW
    J Cell Biol; 1991 Aug; 114(4):799-807. PubMed ID: 1869588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibroblasts transfected with Torpedo acetylcholine receptor beta-, gamma-, and delta-subunit cDNAs express functional receptors when infected with a retroviral alpha recombinant.
    Claudio T; Paulson HL; Green WN; Ross AF; Hartman DS; Hayden D
    J Cell Biol; 1989 Jun; 108(6):2277-90. PubMed ID: 2472403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational analysis of muscle nicotinic acetylcholine receptor subunit assembly.
    Blount P; Merlie JP
    J Cell Biol; 1990 Dec; 111(6 Pt 1):2613-22. PubMed ID: 2277075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BiP forms stable complexes with unassembled subunits of the acetylcholine receptor in transfected COS cells and in C2 muscle cells.
    Forsayeth JR; Gu Y; Hall ZW
    J Cell Biol; 1992 May; 117(4):841-7. PubMed ID: 1577860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A conserved disulfide loop facilitates conformational maturation in the subunits of the acetylcholine receptor.
    Walcott EC; Sumikawa K
    Brain Res Mol Brain Res; 1996 Sep; 41(1-2):289-300. PubMed ID: 8883962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane tethering enables an extracellular domain of the acetylcholine receptor alpha subunit to form a heterodimeric ligand-binding site.
    Wang ZZ; Hardy SF; Hall ZW
    J Cell Biol; 1996 Nov; 135(3):809-17. PubMed ID: 8909552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characterization of Dalpha6 and Dalpha7 nicotinic acetylcholine receptor subunits from Drosophila: formation of a high-affinity alpha-bungarotoxin binding site revealed by expression of subunit chimeras.
    Lansdell SJ; Millar NS
    J Neurochem; 2004 Jul; 90(2):479-89. PubMed ID: 15228604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis of the conserved N-glycosylation site on the nicotinic acetylcholine receptor subunits.
    Gehle VM; Sumikawa K
    Brain Res Mol Brain Res; 1991 Aug; 11(1):17-25. PubMed ID: 1662742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of the nicotinic acetylcholine receptor binding sites.
    Green WN; Wanamaker CP
    J Neurosci; 1998 Aug; 18(15):5555-64. PubMed ID: 9671647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly intermediates of the mouse muscle nicotinic acetylcholine receptor in stably transfected fibroblasts.
    Blount P; Smith MM; Merlie JP
    J Cell Biol; 1990 Dec; 111(6 Pt 1):2601-11. PubMed ID: 2277074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonidentity of the alpha-neurotoxin binding sites on the nicotinic acetylcholine receptor revealed by modification in alpha-neurotoxin and receptor structures.
    Ackermann EJ; Taylor P
    Biochemistry; 1997 Oct; 36(42):12836-44. PubMed ID: 9335541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the endoplasmic reticulum chaperone calnexin in subunit folding and assembly of nicotinic acetylcholine receptors.
    Gelman MS; Chang W; Thomas DY; Bergeron JJ; Prives JM
    J Biol Chem; 1995 Jun; 270(25):15085-92. PubMed ID: 7797492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of two acetylcholine receptor subunit domains in homomer formation and intersubunit recognition, as revealed by alpha 3 and alpha 7 subunit chimeras.
    García-Guzmán M; Sala F; Sala S; Campos-Caro A; Criado M
    Biochemistry; 1994 Dec; 33(50):15198-203. PubMed ID: 7999780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.