These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 1429651)

  • 41. Alpha-Bungarotoxin binding to human muscle acetylcholine receptor: measurement of affinity, delineation of AChR subunit residues crucial to binding, and protection of AChR function by synthetic peptides.
    Vincent A; Jacobson L; Curran L
    Neurochem Int; 1998; 32(5-6):427-33. PubMed ID: 9676741
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Residues in the epsilon subunit of the nicotinic acetylcholine receptor interact to confer selectivity of waglerin-1 for the alpha-epsilon subunit interface site.
    Molles BE; Tsigelny I; Nguyen PD; Gao SX; Sine SM; Taylor P
    Biochemistry; 2002 Jun; 41(25):7895-906. PubMed ID: 12069578
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anionic residue in the alpha-subunit of the nicotinic acetylcholine receptor contributing to subunit assembly and ligand binding.
    Sugiyama N; Boyd AE; Taylor P
    J Biol Chem; 1996 Oct; 271(43):26575-81. PubMed ID: 8900129
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural determinants of alpha-bungarotoxin binding to the sequence segment 181-200 of the muscle nicotinic acetylcholine receptor alpha subunit: effects of cysteine/cystine modification and species-specific amino acid substitutions.
    McLane KE; Wu XD; Diethelm B; Conti-Tronconi BM
    Biochemistry; 1991 May; 30(20):4925-34. PubMed ID: 2036361
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Covalent modification of engineered cysteines in the nicotinic acetylcholine receptor agonist-binding domain inhibits receptor activation.
    McLaughlin JT; Hawrot E; Yellen G
    Biochem J; 1995 Sep; 310 ( Pt 3)(Pt 3):765-9. PubMed ID: 7575408
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Alpha-conotoxin residues that interact at close range with gamma-tyrosine-111 and mutant delta-tyrosine-113 on the Torpedo nicotinic acetylcholine receptor.
    Vélez-Carrasco W; Valdés S; Agresar L; Lettich A; Guerra AY; Hann RM
    Biochemistry; 2004 Oct; 43(39):12700-8. PubMed ID: 15449960
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Glycosylation sites selectively interfere with alpha-toxin binding to the nicotinic acetylcholine receptor.
    Kreienkamp HJ; Sine SM; Maeda RK; Taylor P
    J Biol Chem; 1994 Mar; 269(11):8108-14. PubMed ID: 7907588
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Topology of ligand binding sites on the nicotinic acetylcholine receptor.
    Arias HR
    Brain Res Brain Res Rev; 1997 Oct; 25(2):133-91. PubMed ID: 9403137
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of mutations of Torpedo acetylcholine receptor alpha 1 subunit residues 184-200 on alpha-bungarotoxin binding in a recombinant fusion protein.
    Chaturvedi V; Donnelly-Roberts DL; Lentz TL
    Biochemistry; 1993 Sep; 32(37):9570-6. PubMed ID: 8373764
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Altered glycosylation sites of the delta subunit of the acetylcholine receptor (AChR) reduce alpha delta association and receptor assembly.
    Ramanathan VK; Hall ZW
    J Biol Chem; 1999 Jul; 274(29):20513-20. PubMed ID: 10400680
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional characterization of mongoose nicotinic acetylcholine receptor alpha-subunit: resistance to alpha-bungarotoxin and high sensitivity to acetylcholine.
    Asher O; Lupu-Meiri M; Jensen BS; Paperna T; Fuchs S; Oron Y
    FEBS Lett; 1998 Jul; 431(3):411-4. PubMed ID: 9714553
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nicotinic receptor assembly requires multiple regions throughout the gamma subunit.
    Eertmoed AL; Green WN
    J Neurosci; 1999 Aug; 19(15):6298-308. PubMed ID: 10414959
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Alpha-bungarotoxin binding to a high molecular weight component from lower vertebrate brain identified on dodecyl sulfate protein-blots.
    Hawrot E; Wilson PT; Gershoni JM; Reese JH; Lentz TL
    Brain Res; 1986 May; 373(1-2):227-34. PubMed ID: 3719308
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Water-soluble nicotinic acetylcholine receptor formed by alpha7 subunit extracellular domains.
    Wells GB; Anand R; Wang F; Lindstrom J
    J Biol Chem; 1998 Jan; 273(2):964-73. PubMed ID: 9422757
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Determinants of phencyclidine potency on the nicotinic acetylcholine receptors from muscle and electric organ.
    Eterović VA; Lu R; Eakin AE; Rodríguez AD; Ferchmin PA
    Cell Mol Neurobiol; 1999 Dec; 19(6):745-57. PubMed ID: 10456235
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Expression and renaturation of the N-terminal extracellular domain of torpedo nicotinic acetylcholine receptor alpha-subunit.
    Schrattenholz A; Pfeiffer S; Pejovic V; Rudolph R; Godovac-Zimmermann J; Maelicke A
    J Biol Chem; 1998 Dec; 273(49):32393-9. PubMed ID: 9829968
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Yeast expression and NMR analysis of the extracellular domain of muscle nicotinic acetylcholine receptor alpha subunit.
    Yao Y; Wang J; Viroonchatapan N; Samson A; Chill J; Rothe E; Anglister J; Wang ZZ
    J Biol Chem; 2002 Apr; 277(15):12613-21. PubMed ID: 11812776
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The alpha-bungarotoxin-binding nicotinic acetylcholine receptor from rat brain contains only the alpha7 subunit.
    Chen D; Patrick JW
    J Biol Chem; 1997 Sep; 272(38):24024-9. PubMed ID: 9295355
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The mongoose acetylcholine receptor alpha-subunit: analysis of glycosylation and alpha-bungarotoxin binding.
    Asher O; Jensen BS; Lupu-Meiri M; Oron Y; Fuchs S
    FEBS Lett; 1998 Apr; 426(2):212-6. PubMed ID: 9599010
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The N-terminal domains of acetylcholine receptor subunits contain recognition signals for the initial steps of receptor assembly.
    Verrall S; Hall ZW
    Cell; 1992 Jan; 68(1):23-31. PubMed ID: 1370654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.