These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 1429674)

  • 41. Association of excitatory amino acid transporters, especially EAAT2, with cholesterol-rich lipid raft microdomains: importance for excitatory amino acid transporter localization and function.
    Butchbach ME; Tian G; Guo H; Lin CL
    J Biol Chem; 2004 Aug; 279(33):34388-96. PubMed ID: 15187084
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The 'glial' glutamate transporter, EAAT2 (Glt-1) accounts for high affinity glutamate uptake into adult rodent nerve endings.
    Suchak SK; Baloyianni NV; Perkinton MS; Williams RJ; Meldrum BS; Rattray M
    J Neurochem; 2003 Feb; 84(3):522-32. PubMed ID: 12558972
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of the intestinal Na-phosphate cotransporter.
    Peerce BE
    Am J Physiol; 1989 Apr; 256(4 Pt 1):G645-52. PubMed ID: 2705525
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inhibition of sodium-dependent transport systems in rat renal brush-border membranes with N,N'-dicyclohexylcarbodiimide.
    Friedrich T; Sablotni J; Burckhardt G
    Biochem Biophys Res Commun; 1987 Aug; 147(1):375-81. PubMed ID: 3632677
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cation dependence of renal outer cortical brush border membrane L-glutamate transport.
    Fukuhara Y; Turner RJ
    Am J Physiol; 1985 Jun; 248(6 Pt 2):F869-75. PubMed ID: 2860810
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The transport modifier RS1 is localized at the inner side of the plasma membrane and changes membrane capacitance.
    Valentin M; Kühlkamp T; Wagner K; Krohne G; Arndt P; Baumgarten K; Weber W; Segal A; Veyhl M; Koepsell H
    Biochim Biophys Acta; 2000 Sep; 1468(1-2):367-80. PubMed ID: 11018680
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photoaffinity labeling of brush-border membrane proteins which bind phosphonoformic acid.
    al-Mahrouq HA; Kempson SA
    J Biol Chem; 1991 Jan; 266(3):1422-7. PubMed ID: 1824842
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of two unique polypeptides from dog kidney outer cortex and outer medulla that exhibit different Na+/D-glucose cotransport functional properties.
    Silverman M; Speight P; Ho L
    Biochim Biophys Acta; 1993 Nov; 1153(1):43-52. PubMed ID: 8241249
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pleiotropic upregulation of Na(+)-dependent cotransporters by retinoic acid in opossum kidney cells.
    de Toledo FG; Beers KW; Dousa TP
    Am J Physiol; 1997 Sep; 273(3 Pt 2):F438-44. PubMed ID: 9321917
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparative analysis of sodium-dependent L-glutamate transport of synaptosomal and astroglial membrane vesicles from mouse cortex.
    Rauen T; Jeserich G; Danbolt NC; Kanner BI
    FEBS Lett; 1992 Nov; 312(1):15-20. PubMed ID: 1426232
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Heterogeneity of Pi transport by BBM from superficial and juxtamedullary cortex of rat.
    Levi M
    Am J Physiol; 1990 Jun; 258(6 Pt 2):F1616-24. PubMed ID: 2141765
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Examination of the substrate stoichiometry of the intestinal Na+/phosphate cotransporter.
    Peerce BE
    J Membr Biol; 1989 Sep; 110(2):189-97. PubMed ID: 2810348
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gentamicin causes endocytosis of Na/Pi cotransporter protein (NaPi-2).
    Sorribas V; Halaihel N; Puttaparthi K; Rogers T; Cronin RE; Alcalde AI; Aramayona J; Sarasa M; Wang H; Wilson P; Zajicek H; Levi M
    Kidney Int; 2001 Mar; 59(3):1024-36. PubMed ID: 11231357
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of L-glutamate uptake into and release from astrocytes and neurons cultured from different brain regions.
    Drejer J; Larsson OM; Schousboe A
    Exp Brain Res; 1982; 47(2):259-69. PubMed ID: 6126390
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Substrate specificity of the mammary tissue anionic amino acid carrier operating in the cotransport and exchange modes.
    Millar ID; Calvert DT; Lomax MA; Shennan DB
    Biochim Biophys Acta; 1997 May; 1326(1):92-102. PubMed ID: 9188804
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Renal brush-border membrane Na(+)-sulfate cotransport: stimulation by thyroid hormone.
    Tenenhouse HS; Lee J; Harvey N
    Am J Physiol; 1991 Sep; 261(3 Pt 2):F420-6. PubMed ID: 1832265
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Properties of excitatory amino acid transport in the human U373 astrocytoma cell line.
    Dunlop J; Lou Z; McIlvain HB
    Brain Res; 1999 Aug; 839(2):235-42. PubMed ID: 10519046
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of P(i) restriction on renal Na(+)-P(i) cotransporter mRNA and immunoreactive protein in X-linked Hyp mice.
    Tenenhouse HS; Martel J; Biber J; Murer H
    Am J Physiol; 1995 Jun; 268(6 Pt 2):F1062-9. PubMed ID: 7611447
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rat hepatoma cells express novel transport systems for glutamine and glutamate in addition to those present in normal rat hepatocytes.
    McGivan JD
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):255-60. PubMed ID: 9461518
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characteristics of L-aspartate transport and expression of EAAC-1 in sarcolemmal vesicles and isolated cells from rat heart.
    King N; Williams H; McGivan JD; Suleiman MS
    Cardiovasc Res; 2001 Oct; 52(1):84-94. PubMed ID: 11557236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.