These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 1429705)
1. Oxidative fragmentation of collagen and prolyl peptide by Cu(II)/H2O2. Conversion of proline residue to 2-pyrrolidone. Kato Y; Uchida K; Kawakishi S J Biol Chem; 1992 Nov; 267(33):23646-51. PubMed ID: 1429705 [TBL] [Abstract][Full Text] [Related]
2. Interaction of prolyl 4-hydroxylase with synthetic peptide substrates. A conformational model for collagen proline hydroxylation. Atreya PL; Ananthanarayanan VS J Biol Chem; 1991 Feb; 266(5):2852-8. PubMed ID: 1847136 [TBL] [Abstract][Full Text] [Related]
3. A novel mechanism for oxidative cleavage of prolyl peptides induced by the hydroxyl radical. Uchida K; Kato Y; Kawakishi S Biochem Biophys Res Commun; 1990 May; 169(1):265-71. PubMed ID: 2161657 [TBL] [Abstract][Full Text] [Related]
4. Conformational requirement for lysine hydroxylation in collagen. Structural studies on synthetic peptide substrates of lysyl hydroxylase. Jiang P; Ananthanarayanan VS J Biol Chem; 1991 Dec; 266(34):22960-7. PubMed ID: 1744090 [TBL] [Abstract][Full Text] [Related]
5. Effect of solvent on the cis-trans conformational equilibrium of a proline imide bond of short model peptides in solution. Sugawara M; Tonan K; Ikawa S Spectrochim Acta A Mol Biomol Spectrosc; 2001 May; 57(6):1305-16. PubMed ID: 11419473 [TBL] [Abstract][Full Text] [Related]
6. The peptide-substrate-binding domain of human collagen prolyl 4-hydroxylases. Backbone assignments, secondary structure, and binding of proline-rich peptides. Hieta R; Kukkola L; Permi P; Pirilä P; Kivirikko KI; Kilpeläinen I; Myllyharju J J Biol Chem; 2003 Sep; 278(37):34966-74. PubMed ID: 12824157 [TBL] [Abstract][Full Text] [Related]
7. Palladium(II) complex as a sequence-specific peptidase: hydrolytic cleavage under mild conditions of X-Pro peptide bonds in X-Pro-Met and X-Pro-His segments. Milović NM; Kostić NM J Am Chem Soc; 2003 Jan; 125(3):781-8. PubMed ID: 12526679 [TBL] [Abstract][Full Text] [Related]
8. Identification of oxidized histidine generated at the active site of Cu,Zn-superoxide dismutase exposed to H2O2. Selective generation of 2-oxo-histidine at the histidine 118. Uchida K; Kawakishi S J Biol Chem; 1994 Jan; 269(4):2405-10. PubMed ID: 8300566 [TBL] [Abstract][Full Text] [Related]
9. Identification and synthesis of chemotactic tripeptides from alkali-degraded whole cornea. A study of N-acetyl-proline-glycine-proline and N-methyl-proline-glycine-proline. Pfister RR; Haddox JL; Sommers CI; Lam KW Invest Ophthalmol Vis Sci; 1995 Jun; 36(7):1306-16. PubMed ID: 7775108 [TBL] [Abstract][Full Text] [Related]
10. Thermodynamic and kinetic consequences of substituting glycine at different positions in a Pro-Hyp-Gly repeat collagen model peptide. Chen YS; Chen CC; Horng JC Biopolymers; 2011; 96(1):60-8. PubMed ID: 20560144 [TBL] [Abstract][Full Text] [Related]
11. Boc-Pro-Hyp-Gly-OBzl and Boc-Ala-Hyp-Gly-OBzl, two repeating triplets found in collagen. Doi M; Imori K; Sakaguchi N; Asano A Acta Crystallogr C; 2006 Sep; 62(Pt 9):o577-80. PubMed ID: 16954647 [TBL] [Abstract][Full Text] [Related]
12. Quantification of hydroxyl radical-derived oxidation products in peptides containing glycine, alanine, valine, and proline. Morgan PE; Pattison DI; Davies MJ Free Radic Biol Med; 2012 Jan; 52(2):328-39. PubMed ID: 22064365 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and peptide bond orientation in tetrapeptides containing L-azetidine-2-carboxylic acid and L-proline. Tsai FH; Overberger CG; Zand R Biopolymers; 1990; 30(11-12):1039-49. PubMed ID: 2081265 [TBL] [Abstract][Full Text] [Related]
14. Cloning and characterization of a low molecular weight prolyl 4-hydroxylase from Arabidopsis thaliana. Effective hydroxylation of proline-rich, collagen-like, and hypoxia-inducible transcription factor alpha-like peptides. Hieta R; Myllyharju J J Biol Chem; 2002 Jun; 277(26):23965-71. PubMed ID: 11976332 [TBL] [Abstract][Full Text] [Related]
15. Orchestration of Structural, Stereoelectronic, and Hydrogen-Bonding Effects in Stabilizing Triplexes from Engineered Chimeric Collagen Peptides (Pro(X)-Pro(Y)-Gly)6 Incorporating 4(R/S)-Aminoproline. Umashankara M; Sonar MV; Bansode ND; Ganesh KN J Org Chem; 2015 Sep; 80(17):8552-60. PubMed ID: 26274096 [TBL] [Abstract][Full Text] [Related]
16. The crystal structure of the collagen-like polypeptide (glycyl-4(R)-hydroxyprolyl-4(R)-hydroxyprolyl)9 at 1.55 A resolution shows up-puckering of the proline ring in the Xaa position. Schumacher M; Mizuno K; Bächinger HP J Biol Chem; 2005 May; 280(21):20397-403. PubMed ID: 15784619 [TBL] [Abstract][Full Text] [Related]
17. Copper-binding amyloid precursor protein undergoes a site-specific fragmentation in the reduction of hydrogen peroxide. Multhaup G; Ruppert T; Schlicksupp A; Hesse L; Bill E; Pipkorn R; Masters CL; Beyreuther K Biochemistry; 1998 May; 37(20):7224-30. PubMed ID: 9585534 [TBL] [Abstract][Full Text] [Related]
18. The enzymic hydroxylation of protocollagen models. Kikuchi Y; Fujimoto D; Tamiya N Biochem J; 1969 Nov; 115(3):569-74. PubMed ID: 4311063 [TBL] [Abstract][Full Text] [Related]
19. Single proline residues can dictate the oxidative folding pathways of cysteine-rich peptides. Boulègue C; Milbradt AG; Renner C; Moroder L J Mol Biol; 2006 May; 358(3):846-56. PubMed ID: 16530224 [TBL] [Abstract][Full Text] [Related]
20. Effect of the -Gly-3(S)-hydroxyprolyl-4(R)-hydroxyprolyl- tripeptide unit on the stability of collagen model peptides. Mizuno K; Peyton DH; Hayashi T; Engel J; Bächinger HP FEBS J; 2008 Dec; 275(23):5830-40. PubMed ID: 19021759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]