These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 1429762)

  • 1. In vitro corrosion fatigue of 316L cold worked stainless steel.
    Taira M; Lautenschlager EP
    J Biomed Mater Res; 1992 Sep; 26(9):1131-9. PubMed ID: 1429762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of electropolishing on the corrosion resistance of 316L stainless steel.
    Sutow EJ
    J Biomed Mater Res; 1980 Sep; 14(5):587-95. PubMed ID: 7349665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of static stress on the corrosion behavior of 316L stainless steel in Ringer's solution.
    Bundy KJ; Vogelbaum MA; Desai VH
    J Biomed Mater Res; 1986 Apr; 20(4):493-505. PubMed ID: 3700443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corrosion fatigue of surgical stainless steel in synthetic physiological solution.
    Cahoon JR; Holte RN
    J Biomed Mater Res; 1981 Mar; 15(2):137-45. PubMed ID: 7348709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Corrosion and haemocompatibility of 316L stainless steel with electroplated Rh film].
    Liu J; Yang D; Liang C; Guo L; Kong L; Cai Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):169-72. PubMed ID: 11450526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Measurement of low corrosion rate of coronary stents-made of 316L and 317L stainless steel].
    Liang C; Guo L; Chen W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):829-31. PubMed ID: 17002118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro corrosion of Ti-6Al-4V and type 316L stainless steel when galvanically coupled with carbon.
    Thompson NG; Buchanan RA; Lemons JE
    J Biomed Mater Res; 1979 Jan; 13(1):35-44. PubMed ID: 429383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AES analysis of stainless steel corroded in saline, in serum and in vivo.
    Zabel DD; Brown SA; Merritt K; Payer JH
    J Biomed Mater Res; 1988 Jan; 22(1):31-44. PubMed ID: 3343256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localized corrosion of 316L stainless steel with SiO2-CaO films obtained by means of sol-gel treatment.
    Vallet-Regí M; Izquierdo-Barba I; Gil FJ
    J Biomed Mater Res A; 2003 Nov; 67(2):674-8. PubMed ID: 14566812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures.
    Tang YC; Katsuma S; Fujimoto S; Hiromoto S
    Acta Biomater; 2006 Nov; 2(6):709-15. PubMed ID: 16935040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new stainless steel alloy for surgical implants compared to 316 S12.
    Smethurst E
    Biomaterials; 1981 Apr; 2(2):116-9. PubMed ID: 7248423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of boron addition on injection molded 316L stainless steel: mechanical, corrosion properties and in vitro bioactivity.
    Bayraktaroglu E; Gulsoy HO; Gulsoy N; Er O; Kilic H
    Biomed Mater Eng; 2012; 22(6):333-49. PubMed ID: 23114463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The corrosion fatigue properties of surgical implants in a living body.
    Morita M; Sasada T; Hayashi H; Tsukamoto Y
    J Biomed Mater Res; 1988 Jun; 22(6):529-40. PubMed ID: 3410871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in vitro investigation of the anodic polarization and capacitance behavior of 316-L stainless steel.
    Sutow EJ; Pollack SR; Korostoff E
    J Biomed Mater Res; 1976 Sep; 10(5):671-93. PubMed ID: 10307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repassivation of a high chromium stainless steel orthopaedic alloy.
    Karov J; Sinclair A; Hinberg I
    Biomed Mater Eng; 2002; 12(4):375-86. PubMed ID: 12652032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo and in vitro studies of the stress-corrosion cracking behavior of surgical implant alloys.
    Bundy KJ; Marek M; Hochman RF
    J Biomed Mater Res; 1983 May; 17(3):467-87. PubMed ID: 6863350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corrosion behavior of sensitized duplex stainless steel.
    Torres FJ; Panyayong W; Rogers W; Velasquez-Plata D; Oshida Y; Moore BK
    Biomed Mater Eng; 1998; 8(1):25-36. PubMed ID: 9713683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo behavior of a high performance duplex stainless steel.
    Cigada A; De Santis G; Gatti AM; Roos A; Zaffe D
    J Appl Biomater; 1993; 4(1):39-46. PubMed ID: 10148344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A manufacturing and annealing protocol to develop a cold-sprayed Fe-316L stainless steel biodegradable stenting material.
    Frattolin J; Roy R; Rajagopalan S; Walsh M; Yue S; Bertrand OF; Mongrain R
    Acta Biomater; 2019 Nov; 99():479-494. PubMed ID: 31449928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influences of electrical potential and surface finish on the fatigue life of surgical implant materials.
    Bapna MS; Lautenschlager EP; Moser JB
    J Biomed Mater Res; 1975 Nov; 9(6):611-21. PubMed ID: 1184609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.