These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 1429829)

  • 41. Biodistribution of gadolinium incorporated in lipid emulsions intraperitoneally administered for neutron-capture therapy with tumor-bearing hamsters.
    Miyamoto M; Hirano K; Ichikawa H; Fukumori Y; Akine Y; Tokuuye K
    Biol Pharm Bull; 1999 Dec; 22(12):1331-40. PubMed ID: 10746166
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A fundamental study on hyper-thermal neutrons for neutron capture therapy.
    Sakurai Y; Kobayashi T; Kanda K
    Phys Med Biol; 1994 Dec; 39(12):2217-27. PubMed ID: 15551549
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vivo growth inhibitory and radiosensitizing effects of withaferin A on mouse Ehrlich ascites carcinoma.
    Devi PU; Sharada AC; Solomon FE
    Cancer Lett; 1995 Aug; 95(1-2):189-93. PubMed ID: 7656229
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of the dose enhancement of combined ¹⁰B + ¹⁵⁷Gd neutron capture therapy (NCT).
    Protti N; Geninatti-Crich S; Alberti D; Lanzardo S; Deagostino A; Toppino A; Aime S; Ballarini F; Bortolussi S; Bruschi P; Postuma I; Altieri S; Nikjoo H
    Radiat Prot Dosimetry; 2015 Sep; 166(1-4):369-73. PubMed ID: 26246584
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A comparison of the COG and MCNP codes in computational neutron capture therapy modeling, Part II: gadolinium neutron capture therapy models and therapeutic effects.
    Wangerin K; Culbertson CN; Jevremovic T
    Health Phys; 2005 Aug; 89(2):135-44. PubMed ID: 16010124
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An investigation of the feasibility of gadolinium for neutron capture synovectomy.
    Gierga DP; Yanch JC; Shefer RE
    Med Phys; 2000 Jul; 27(7):1685-92. PubMed ID: 10947274
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vivo gadolinium neutron capture therapy using a potentially effective compound (Gd-BOPTA).
    Matsumura A; Zhang T; Yamamoto T; Yoshida F; Sakurai Y; Shimojo N; Nose T
    Anticancer Res; 2003; 23(3B):2451-6. PubMed ID: 12894527
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Experimental verification of improved depth-dose distribution using hyper-thermal neutron incidence in neutron capture therapy.
    Sakurai Y; Kobayashi T
    Phys Med Biol; 2001 Jan; 46(1):121-33. PubMed ID: 11197667
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stem cell-nanomedicine system as a theranostic bio-gadolinium agent for targeted neutron capture cancer therapy.
    Lai YH; Su CY; Cheng HW; Chu CY; Jeng LB; Chiang CS; Shyu WC; Chen SY
    Nat Commun; 2023 Jan; 14(1):285. PubMed ID: 36650171
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of pentazocine on Ehrlich ascites tumor cells.
    Kigoshi S
    Jpn J Pharmacol; 1981 Oct; 31(5):781-5. PubMed ID: 7311171
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Viscosimetric and sedimentation study of the buildup and repair of single-stranded DNA breaks in Ehrlich ascitic carcinoma cells after gamma or neutron (0.85 MeV) irradiation].
    Proskuriakov SIa; Konopliannikov AG; Synzynys BI
    Radiobiologiia; 1979; 19(4):521-4. PubMed ID: 504593
    [No Abstract]   [Full Text] [Related]  

  • 52. Resistance to Ehrlich ascites tumor in a strain of dystrophic mice.
    Carry PJ; Prescott DM; Ogilvie GK
    Cancer Res; 1979 Jun; 39(6 Pt 1):2139-40. PubMed ID: 445411
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The medical-irradiation characteristics for neutron capture therapy at the Heavy Water Neutron Irradiation Facility of Kyoto University Research Reactor.
    Sakurai Y; Kobayashi T
    Med Phys; 2002 Oct; 29(10):2328-37. PubMed ID: 12408307
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Dynamics of penetration of "solid" nanoconstructions based on double-stranded DNA complexed with gadolinium into CHO cells].
    Popenko VI; Leonova OG; Salianov VI; Orlova NN; Spirin PV; Prasolov VS; Evdokimov IuM
    Mol Biol (Mosk); 2013; 47(5):853-60. PubMed ID: 25509358
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Measurements and calculations of thermal neutron fluence rate and neutron energy spectra resulting from moderation of 252Cf fast neutrons: applications for neutron capture therapy.
    Rivard MJ
    Med Phys; 2000 Aug; 27(8):1761-9. PubMed ID: 10984222
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effectiveness of the high-LET radiations from the boron neutron capture [10B(n,α) 7Li] reaction determined for induction of chromosome aberrations and apoptosis in lymphocytes of human blood samples.
    Schmid TE; Canella L; Kudejova P; Wagner FM; Röhrmoser A; Schmid E
    Radiat Environ Biophys; 2015 Mar; 54(1):91-102. PubMed ID: 25428113
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Neutron capture therapy in cancer].
    Hatanaka H
    Nihon Rinsho; 1984 Oct; 42(10):2357-74. PubMed ID: 6394790
    [No Abstract]   [Full Text] [Related]  

  • 58. Preparation of gadopentetic acid-loaded chitosan microparticles for gadolinium neutron-capture therapy of cancer by a novel emulsion-droplet coalescence technique.
    Tokumitsu H; Ichikawa H; Fukumori Y; Block LH
    Chem Pharm Bull (Tokyo); 1999 Jun; 47(6):838-42. PubMed ID: 10399838
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Some inhibitory effects of (--)-emetine on growth of Ehrlich ascites carcinoma.
    Johnson RK; Jondorf WR
    Biochem J; 1974 Apr; 140(1):87-94. PubMed ID: 4451553
    [TBL] [Abstract][Full Text] [Related]  

  • 60. ESR response of CFQ-Gd2O3 dosimeters to a mixed neutron-gamma field: Monte Carlo simulation.
    Hoseininaveh M; Ranjbar AH
    Appl Radiat Isot; 2015 Nov; 105():238-243. PubMed ID: 26342935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.