These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 14298775)

  • 1. [THE NATURE OF THE STRUCTURE OF NEURONS AND SYNAPSES IN THE BRAIN STEM AND SPINAL CORD AND THEIR FUNCTIONAL ROLE IN CARNIVORA].
    ZHUKOVA GP
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1964; 14():714-25. PubMed ID: 14298775
    [No Abstract]   [Full Text] [Related]  

  • 2. THE SPECIFICITY OF THE NEURONAL STRUCTURE AND TOPOGRAPHY OF THE RETICULAR FORMATION IN THE BRAIN AND SPINAL CORD OF CARNIVORA.
    LEONTOVICH TA; ZHUKOVA GP
    J Comp Neurol; 1963 Dec; 121():347-79. PubMed ID: 14100020
    [No Abstract]   [Full Text] [Related]  

  • 3. SITES AND MODE OF TERMINATION OF RUBROSPINAL FIBRES IN THE CAT. AN EXPERIMENTAL STUDY WITH SILVER IMPREGNATION METHODS.
    NYBERG-HANSEN R; BRODAL A
    J Anat; 1964 Apr; 98(Pt 2):235-53. PubMed ID: 14154426
    [No Abstract]   [Full Text] [Related]  

  • 4. [THE NATURE OF THE NEURONAL STRUCTURE AND TOPOGRAPHY OF THE RETICULAR FORMATION IN CARNIVORA].
    ZHUKOVA GP; LEONTOVICH TA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1964; 14():124-47. PubMed ID: 14148650
    [No Abstract]   [Full Text] [Related]  

  • 5. [Formation of descending pathways to the spinal cord].
    Okado N; Sako H; Okada A; Kojima T
    No To Shinkei; 1986 May; 38(5):417-36. PubMed ID: 2427096
    [No Abstract]   [Full Text] [Related]  

  • 6. Transplantation of embryonic spinal cord-derived neurospheres support growth of supraspinal projections and functional recovery after spinal cord injury in the neonatal rat.
    Nakamura M; Okano H; Toyama Y; Dai HN; Finn TP; Bregman BS
    J Neurosci Res; 2005 Aug; 81(4):457-68. PubMed ID: 15968644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. THE LATERAL CERVICAL NUCLEUS OF THE RACCOON.
    HA H; KITAI ST; MORIN F
    Exp Neurol; 1965 Apr; 11():441-50. PubMed ID: 14278099
    [No Abstract]   [Full Text] [Related]  

  • 8. Axonal projections and synaptogenesis by supraspinal descending neurons in the spinal cord of the chick embryo.
    Shiga T; Künzi R; Oppenheim RW
    J Comp Neurol; 1991 Mar; 305(1):83-95. PubMed ID: 1709651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinobulbar neurons in lamprey: cellular properties and synaptic interactions.
    Einum JF; Buchanan JT
    J Neurophysiol; 2006 Oct; 96(4):2042-55. PubMed ID: 16837656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin.
    Pivetta C; Esposito MS; Sigrist M; Arber S
    Cell; 2014 Jan; 156(3):537-48. PubMed ID: 24485459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internalization and retrograde axonal trafficking of tetanus toxin in motor neurons and trans-synaptic propagation at central synapses exceed those of its C-terminal-binding fragments.
    Ovsepian SV; Bodeker M; O'Leary VB; Lawrence GW; Oliver Dolly J
    Brain Struct Funct; 2015; 220(3):1825-38. PubMed ID: 25665801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DECEREBRATE CONTROL OF REFLEXES TO PRIMARY AFFERENTS.
    CARPENTER D; ENGBERG I; FUNKENSTEIN H; LUNDBERG A
    Acta Physiol Scand; 1963 Dec; 59():424-37. PubMed ID: 14082613
    [No Abstract]   [Full Text] [Related]  

  • 13. Neural mechanisms generating respiratory pattern in mammalian brain stem-spinal cord in vitro. I. Spatiotemporal patterns of motor and medullary neuron activity.
    Smith JC; Greer JJ; Liu GS; Feldman JL
    J Neurophysiol; 1990 Oct; 64(4):1149-69. PubMed ID: 2258739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Supraspinal influences on motor neurons in local tetanus].
    Kryzhanovskiĭ GN; Kurchavyĭ GG; Sheĭkhon FD
    Biull Eksp Biol Med; 1973 Apr; 75(4):36-9. PubMed ID: 4804667
    [No Abstract]   [Full Text] [Related]  

  • 15. THE FINE STRUCTURE OF THE MAMMALIAN CHROMOSOME IN MEIOTIC PROPHASE WITH SPECIAL REFERENCE TO THE SYNAPTINEMAL COMPLEX.
    WOOLLAM DH; FORD EH
    J Anat; 1964 Apr; 98(Pt 2):163-73. PubMed ID: 14154419
    [No Abstract]   [Full Text] [Related]  

  • 16. Differential effects of the reticulospinal system on locomotion in lamprey.
    Wannier T; Deliagina TG; Orlovsky GN; Grillner S
    J Neurophysiol; 1998 Jul; 80(1):103-12. PubMed ID: 9658032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of calcium channel Ca(V)1.3 immunoreactivity in the rat spinal cord and brain stem.
    Sukiasyan N; Hultborn H; Zhang M
    Neuroscience; 2009 Mar; 159(1):217-35. PubMed ID: 19136044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of synaptic inputs to paraventricular-spinal output neurons by alpha2 adrenergic receptors.
    Li DP; Atnip LM; Chen SR; Pan HL
    J Neurophysiol; 2005 Jan; 93(1):393-402. PubMed ID: 15356178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological comparison by scanning electron microscopy of transient retina-muscle synapses and long-lived spinal cord-muscle synapses.
    Thompson JM; Norby SW
    Cell Mol Biol; 1992 May; 38(3):327-36. PubMed ID: 1611663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and characterization of pathways descending to the spinal cord in the embryonic chick.
    Sholomenko GN; O'Donovan MJ
    J Neurophysiol; 1995 Mar; 73(3):1223-33. PubMed ID: 7608767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.