These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 14299658)

  • 21. THE SEPARATION AND PARTIAL PURIFICATION OF AMINOACYL-RNA SYNTHETASES FROM ESCHERICHIA COLI.
    MCCORQUODALE DJ
    Biochim Biophys Acta; 1964 Dec; 91():541-8. PubMed ID: 14262440
    [No Abstract]   [Full Text] [Related]  

  • 22. DETERMINATION OF BASE RATIOS OF SIX RIBONUCLEIC ACID BACTERIOPHAGES SPECIFIC TO ESCHERICHIA COLI.
    BISHOP DH; BRADLEY DE
    Biochem J; 1965 Apr; 95(1):82-93. PubMed ID: 14333571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatic synthesis of diadenosine tetraphosphate and diadenosine triphosphate with a purified lysyl-sRNA synthetase.
    Zamecnik PC; Stephenson ML; Janeway CM; Randerath K
    Biochem Biophys Res Commun; 1966 Jul; 24(1):91-7. PubMed ID: 5338216
    [No Abstract]   [Full Text] [Related]  

  • 24. [CIRCULAR DICHROISM OF TRANSFERRED RIBONUCLEIC ACID IN AQUEOUS AND ALCOHOL SOLUTIONS].
    MOMMAERTS WF; BRAHMS J; WEIL JH; EBEL JP
    C R Hebd Seances Acad Sci; 1964 Mar; 258():2687-9. PubMed ID: 14141671
    [No Abstract]   [Full Text] [Related]  

  • 25. Energy charge and protein synthesis. Control of aminoacyl transfer ribonucleic acid synthetases.
    Brenner M; De Lorenzo F; Ames BN
    J Biol Chem; 1970 Jan; 245(2):450-2. PubMed ID: 4904484
    [No Abstract]   [Full Text] [Related]  

  • 26. Studies on valyl-tRNA synthetase and tRNA from Escherichia coli. I. Purification and properties of the enzyme from normal Escherichia coli strains.
    Yaniv M; Gros F
    J Mol Biol; 1969 Aug; 44(1):1-15. PubMed ID: 4897802
    [No Abstract]   [Full Text] [Related]  

  • 27. EFFECT OF BROMINATION ON THE BIOLOGICAL ACTIVITIES OF TRANSFER RNA OF ESCHERICHIA COLI.
    YU CT; ZAMECNIK PC
    Science; 1964 May; 144(3620):856-9. PubMed ID: 14149400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RIBONUCLEIC ACID FROM BOVINE, OVINE AND PORCINE PITUITARIES.
    JIANG NS
    Biochim Biophys Acta; 1964 Jun; 87():347-8. PubMed ID: 14192377
    [No Abstract]   [Full Text] [Related]  

  • 29. THE INTERACTION OF BASIC DYES WITH RIBONUCLEIC ACID.
    SEMMEL M; HUPPERT J
    Arch Biochem Biophys; 1964 Oct; 108():158-68. PubMed ID: 14233908
    [No Abstract]   [Full Text] [Related]  

  • 30. HETEROGENEITY IN THE PARTIAL STRUCTURE OF AN AMINO ACID SPECIFIC TRANSFER RIBONUCLEIC ACID.
    ISHIDA T; MIURA K
    J Biochem; 1963 Oct; 54():378-9. PubMed ID: 14078538
    [No Abstract]   [Full Text] [Related]  

  • 31. AN ENZYMICALLY SYNTHESIZED RNA OF ALTERNATING BASE SEQUENCE: PHYSICAL AND CHEMICAL CHARACTERIZATION.
    CHAMBERLIN M; BALDWIN RL; BERG P
    J Mol Biol; 1963 Oct; 7():334-49. PubMed ID: 14066612
    [No Abstract]   [Full Text] [Related]  

  • 32. SOME ABNORMAL PROPERTIES OF CHLORAMPHENICOL RNA.
    DUBIN DT; ELKORT AT
    J Mol Biol; 1964 Dec; 10():508-18. PubMed ID: 14255115
    [No Abstract]   [Full Text] [Related]  

  • 33. A SOLUBLE RIBONUCLEIC ACID-INDUCED INCREASE IN THE SPECIFICITY OF ESCHERICHIA COLI ISOLEUCINE-ACTIVATING ENZYME.
    LOFTFIELD RB; EIGNER EA
    J Biol Chem; 1965 Mar; 240():PC1482-4. PubMed ID: 14284770
    [No Abstract]   [Full Text] [Related]  

  • 34. [Analogs of nucleoside polyphosphates. 3. Action of adenosine 5'-phosphohypophosphate on hexokinase and on valyl-tRNA synthetase].
    Remy P; Setondji J; Dirheimer G; Ebel JP
    Biochim Biophys Acta; 1970 Mar; 204(1):31-8. PubMed ID: 4908651
    [No Abstract]   [Full Text] [Related]  

  • 35. Structure and function of transfer ribonucleic acid. II. Enzyme-substrate complexes with valyl ribonucleic acid synthetase from yeast.
    Lagerkvist U; Rymo L; Waldenström J
    J Biol Chem; 1966 Nov; 241(22):5391-400. PubMed ID: 5333665
    [No Abstract]   [Full Text] [Related]  

  • 36. Amino acid selectivity in the aminoacylation of coenzyme A and RNA minihelices by aminoacyl-tRNA synthetases.
    Jakubowski H
    J Biol Chem; 2000 Nov; 275(45):34845-8. PubMed ID: 10995737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Comparison of the isoleucyl, leucyl- and valyl-sRNA synthetases of "Escherichia coli" and "Bacillus stearothermophilus". II. Stability of the complexes (aminoacyl-adenylate-enzyme)].
    Lurquin P; Grosjean H; Vanhumbeeck J; Charlier J; Wérenne J
    Arch Int Physiol Biochim; 1968 Feb; 76(1):193-4. PubMed ID: 4175042
    [No Abstract]   [Full Text] [Related]  

  • 38. RIBONUCLEIC ACID FROM THE SILK GLAND OF THE SILKWORM AND THE AMINO ACID CODE.
    SZAFRANSKI P; LUTOWICZ J
    Acta Biochim Pol; 1964; 11():71-81. PubMed ID: 14161320
    [No Abstract]   [Full Text] [Related]  

  • 39. SEQUENCE SPECIFICITY IN SYNTHETIC POLYDEOXYRIBONUCLEOTIDES.
    COHEN D; BANKS GR
    Nature; 1964 Jul; 203():184. PubMed ID: 14207240
    [No Abstract]   [Full Text] [Related]  

  • 40. GLUTAMYL AND GLUTAMINYL RIBONUCLEIC ACID SYNTHETASES OF ESCHERICHIA COLI W. SEPARATION, PROPERTIES, AND STIMULATION OF ADENOSINE TRIPHOSPHATE-PYROPHOSPHATE EXCHANGE BY ACCEPTOR RIBONUCLEIC ACID.
    RAVEL JM; WANG SF; HEINEMEYER C; SHIVE W
    J Biol Chem; 1965 Jan; 240():432-8. PubMed ID: 14253448
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.