BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 1430019)

  • 21. Influence of ignored and well-known zone distortions on the separation performance of proteins in capillary free zone electrophoresis with special reference to analysis in polyacrylamide-coated fused silica capillaries in various buffers. II. Experimental studies at acidic pH with on-line enrichment.
    Mohabbati S; Hjertén S; Westerlund D
    J Chromatogr A; 2004 Oct; 1053(1-2):201-16. PubMed ID: 15543985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Size-based separations of proteins by capillary electrophoresis using linear polyacrylamide as a sieving medium: model studies and analysis of cider proteins.
    Gomis DB; Junco S; Expósito Y; Gutiérrez MD
    Electrophoresis; 2003 May; 24(9):1391-6. PubMed ID: 12731024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of capillary electrophoresis at low pH to oligonucleotides quality control.
    Pietta PG; Mangano MF; Battaglia C; Salani G; Bernardi LR; De Bellis G
    J Chromatogr A; 1999 Aug; 853(1-2):355-8. PubMed ID: 10486742
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Do DNA gel electrophoretic mobilities extrapolate to the free-solution mobility of DNA at zero gel concentration?
    Strutz K; Stellwagen NC
    Electrophoresis; 1998 May; 19(5):635-42. PubMed ID: 9629889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Purification of synthetic oligodeoxyribonucleotides by ion-exchange high-performance liquid chromatography.
    Scanlon D; Haralambidis J; Southwell C; Turton J; Tregear G
    J Chromatogr; 1984 Dec; 336(1):189-98. PubMed ID: 6526919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SSCP analysis of long DNA fragments in low pH gel.
    Kukita Y; Tahira T; Sommer SS; Hayashi K
    Hum Mutat; 1997; 10(5):400-7. PubMed ID: 9375857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RAFT-generated polyacrylamide-DNA block copolymers for single-nucleotide polymorphism genotyping by affinity capillary electrophoresis.
    Kanayama N; Shibata H; Kimura A; Miyamoto D; Takarada T; Maeda M
    Biomacromolecules; 2009 Apr; 10(4):805-13. PubMed ID: 19249847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleoside monophosphates recognition using macrocyclic polyamine bonded phase in capillary electrochromatography.
    Lin SY; Chen WH; Liu CY
    Electrophoresis; 2002 May; 23(9):1230-8. PubMed ID: 12007121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Separation of oligonucleotides of identical size, but different base composition, by free zone capillary electrophoresis in strongly acidic, isoelectric buffers.
    Perego M; Gelfi C; Stoyanov AV; Righetti PG
    Electrophoresis; 1997 Dec; 18(15):2915-20. PubMed ID: 9504830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new strategy for optimizing sensitivity, speed, and resolution in capillary electrophoretic separation of DNA.
    Tseng WL; Chang HT
    Electrophoresis; 2001; 22(4):763-70. PubMed ID: 11296932
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sol-gel technique for the preparation of beta-cyclodextrin derivative stationary phase in open-tubular capillary electrochromatography.
    Wang Y; Zeng Z; Guan N; Cheng J
    Electrophoresis; 2001 Jul; 22(11):2167-72. PubMed ID: 11504048
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of the behaviour of oligonucleotides in high-performance liquid chromatography and capillary electrophoresis.
    Baba Y
    J Chromatogr; 1993 Aug; 618(1-2):41-55. PubMed ID: 8227264
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of urea concentration on the base-specific separation of oligodeoxynucleotides in capillary affinity gel electrophoresis.
    Baba Y; Tsuhako M; Sawa T; Akashi M
    J Chromatogr A; 1993 Oct; 652(1):93-9. PubMed ID: 8281264
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of pH on electrophoretic behavior of phenothiazines and determination of pKa values by capillary zone electrophoresis.
    Lin CE; Liao WS; Chen KH; Lin WY
    Electrophoresis; 2003 Sep; 24(18):3154-9. PubMed ID: 14518038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Capillary electrophoresis of DNA in the 20-500 bp range: recent developments.
    Righetti PG; Gelfi C
    J Biochem Biophys Methods; 1999 Nov; 41(2-3):75-90. PubMed ID: 10626767
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-resolution capillary electrophoretic analysis of DNA in free solution.
    Nathakarnkitkool S; Oefner PJ; Bartsch G; Chin MA; Bonn GK
    Electrophoresis; 1992; 13(1-2):18-31. PubMed ID: 1316836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The resolution of DNA fragments in capillary electrophoresis in replaceable agarose gels.
    Palm A; Hjertén S
    J Capillary Electrophor; 1996; 3(3):173-9. PubMed ID: 9384750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of column length, applied voltage, gel type, and concentration on the capillary electrophoresis separation of DNA fragments and polymerase chain reaction products.
    Issaq HJ; Chan KC; Muschik GM
    Electrophoresis; 1997 Jun; 18(7):1153-8. PubMed ID: 9237572
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Looking at bands from another side.
    Kozulić B
    Anal Biochem; 1994 Feb; 216(2):253-61. PubMed ID: 8179180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrophoretic behaviour of oligonucleotides and mono-, di- and triphosphate nucleotides by capillary zone electrophoresis.
    McKeown AP; Shaw PN; Barrett DA
    Electrophoresis; 2001 Apr; 22(6):1119-26. PubMed ID: 11358136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.