These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 1430154)

  • 21. CNTF promotes the survival and differentiation of adult spinal cord-derived oligodendrocyte precursor cells in vitro but fails to promote remyelination in vivo.
    Talbott JF; Cao Q; Bertram J; Nkansah M; Benton RL; Lavik E; Whittemore SR
    Exp Neurol; 2007 Mar; 204(1):485-9. PubMed ID: 17274982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The presence of astrocytes in areas of demyelination influences remyelination following transplantation of oligodendrocyte progenitors.
    Blakemore WF; Gilson JM; Crang AJ
    Exp Neurol; 2003 Dec; 184(2):955-63. PubMed ID: 14769388
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Schwann cell-like differentiation by adult oligodendrocyte precursor cells following engraftment into the demyelinated spinal cord is BMP-dependent.
    Talbott JF; Cao Q; Enzmann GU; Benton RL; Achim V; Cheng XX; Mills MD; Rao MS; Whittemore SR
    Glia; 2006 Aug; 54(3):147-59. PubMed ID: 16921543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells derived from adult rat spinal cord: in vitro characteristics and response to PDGF, bFGF and NT-3.
    Engel U; Wolswijk G
    Glia; 1996 Jan; 16(1):16-26. PubMed ID: 8787770
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Schwann cells transplanted into normal and X-irradiated adult white matter do not migrate extensively and show poor long-term survival.
    Iwashita Y; Fawcett JW; Crang AJ; Franklin RJ; Blakemore WF
    Exp Neurol; 2000 Aug; 164(2):292-302. PubMed ID: 10915568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The use of cultured autologous Schwann cells to remyelinate areas of persistent demyelination in the central nervous system.
    Blakemore WF; Crang AJ
    J Neurol Sci; 1985 Sep; 70(2):207-23. PubMed ID: 4056820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glial-glial and glial-neuronal interfaces in radiation-induced, glia-depleted spinal cord.
    Gilmore SA; Sims TJ
    J Anat; 1997 Jan; 190 ( Pt 1)(Pt 1):5-21. PubMed ID: 9034878
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival.
    Coderre JA; Morris GM; Micca PL; Hopewell JW; Verhagen I; Kleiboer BJ; van der Kogel AJ
    Radiat Res; 2006 Sep; 166(3):495-503. PubMed ID: 16953668
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oligodendrocytes and the control of myelination in vivo: new insights from the rat anterior medullary velum.
    Butt AM; Berry M
    J Neurosci Res; 2000 Feb; 59(4):477-88. PubMed ID: 10679786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of glial transplantation on functional recovery following acute spinal cord injury.
    Lee KH; Yoon DH; Park YG; Lee BH
    J Neurotrauma; 2005 May; 22(5):575-89. PubMed ID: 15892602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of the number of oligodendrocytes transplanted into X-irradiated, glial-free lesions on the extent of oligodendrocyte remyelination.
    Crang AJ; Blakemore WF
    Neurosci Lett; 1989 Sep; 103(3):269-74. PubMed ID: 2812513
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glial precursor cell transplantation therapy for neurotrauma and multiple sclerosis.
    Kulbatski I; Mothe AJ; Parr AM; Kim H; Kang CE; Bozkurt G; Tator CH
    Prog Histochem Cytochem; 2008; 43(3):123-76. PubMed ID: 18706353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Repair of demyelinated lesions by glial cell transplantation.
    Blakemore WF; Franklin RJ; Crang AJ
    J Neurol; 1994 Dec; 242(1 Suppl 1):S61-3. PubMed ID: 7699413
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Type 1 astrocytes fail to inhibit Schwann cell remyelination of CNS axons in the absence of cells of the O-2A lineage.
    Franklin RJ; Crang AJ; Blakemore WF
    Dev Neurosci; 1992; 14(2):85-92. PubMed ID: 1396178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Migration and differentiation of neural progenitor cells from two different regions of embryonic central nervous system after transplantation into the intact spinal cord.
    Enomoto M; Shinomiya K; Okabe S
    Eur J Neurosci; 2003 Mar; 17(6):1223-32. PubMed ID: 12670310
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Restoration of normal conduction properties in demyelinated spinal cord axons in the adult rat by transplantation of exogenous Schwann cells.
    Honmou O; Felts PA; Waxman SG; Kocsis JD
    J Neurosci; 1996 May; 16(10):3199-208. PubMed ID: 8627358
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impaired remyelination and depletion of oligodendrocyte progenitors does not occur following repeated episodes of focal demyelination in the rat central nervous system.
    Penderis J; Shields SA; Franklin RJ
    Brain; 2003 Jun; 126(Pt 6):1382-91. PubMed ID: 12764059
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The behaviour of meningeal cells following glial cell transplantation into chemically-induced areas of demyelination in the CNS.
    Franklin RJ; Crang AJ; Blakemore WF
    Neuropathol Appl Neurobiol; 1992 Apr; 18(2):189-200. PubMed ID: 1620278
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Olfactory ensheathing cells exhibit unique migratory, phagocytic, and myelinating properties in the X-irradiated spinal cord not shared by Schwann cells.
    Lankford KL; Sasaki M; Radtke C; Kocsis JD
    Glia; 2008 Nov; 56(15):1664-78. PubMed ID: 18551623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Restoration of function by glial cell transplantation into demyelinated spinal cord.
    Kocsis JD
    J Neurotrauma; 1999 Aug; 16(8):695-703. PubMed ID: 10511242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.