These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 14307179)

  • 41. ON THE STRUCTURE OF THE ENDS OF LAMBADA DNA.
    STRACK HB; KAISER AD
    J Mol Biol; 1965 May; 12():36-49. PubMed ID: 14343295
    [No Abstract]   [Full Text] [Related]  

  • 42. NOVEL INTRA-CELLULAR FORMS OF LAMBDA DNA.
    YOUNG ET; SINSHEIMER RL
    J Mol Biol; 1964 Dec; 10():562-4. PubMed ID: 14257703
    [No Abstract]   [Full Text] [Related]  

  • 43. Bacteriophage T4 transfer RNA. 3. Clustering of the genes for the T4 transfer RNA's.
    Wilson JH; Kim JS; Abelson JN
    J Mol Biol; 1972 Nov; 71(3):547-56. PubMed ID: 4567465
    [No Abstract]   [Full Text] [Related]  

  • 44. Replication of the single stranded DNA bacteriophage M 13. Intracellular flow of parental DNA and transfer to progeny particles.
    Wirtz A; Hofschneider PH
    Eur J Biochem; 1970 Nov; 17(1):141-50. PubMed ID: 4922329
    [No Abstract]   [Full Text] [Related]  

  • 45. In vivo production of an RNA-DNA copolymer after infection of Escherichia coli by bacteriophage T4.
    Buckley PJ; Kosturko LD; Kozinski AW
    Proc Natl Acad Sci U S A; 1972 Nov; 69(11):3165-9. PubMed ID: 4564205
    [TBL] [Abstract][Full Text] [Related]  

  • 46. MECHANISM OF RNA POLYMERASE ACTION: FORMATION OF DNA-RNA HYBRIDS WITH SINGLE-STRANDED TEMPLATES.
    CHAMBERLIN M; BERG P
    J Mol Biol; 1964 Feb; 8():297-313. PubMed ID: 14126298
    [No Abstract]   [Full Text] [Related]  

  • 47. Equal transfer of both parental T7 DNA strands to progeny bacteriophage.
    Summers WC
    Nature; 1968 Jul; 219(5150):159-60. PubMed ID: 5659641
    [No Abstract]   [Full Text] [Related]  

  • 48. MUTANTS OF BACTERIOPHAGES T2 AND T6 DEFECTIVE IN ALPHA-GLUCOSYL TRANSFERASE.
    REVEL HR; HATTMAN S; LURIA SE
    Biochem Biophys Res Commun; 1965 Feb; 18():545-50. PubMed ID: 14301458
    [No Abstract]   [Full Text] [Related]  

  • 49. REPLICATION OF VIRAL RNA, III. DOUBLE-STRANDED REPLICATIVE FORM OF MSW PHAGE RNA.
    WEISSMANN C; BORST P; BURDON RH; BILLETER MA; OCHOA S
    Proc Natl Acad Sci U S A; 1964 Apr; 51(4):682-90. PubMed ID: 14166775
    [No Abstract]   [Full Text] [Related]  

  • 50. RESTRICTION OF IN VIVO GENETIC TRANSCRIPTION TO ONE OF THE COMPLEMENTARY STRANDS OF DNA.
    HAYASHI M; HAYASHI MN; SPIEGELMAN S
    Proc Natl Acad Sci U S A; 1963 Oct; 50(4):664-72. PubMed ID: 14077495
    [No Abstract]   [Full Text] [Related]  

  • 51. Genetic transformation of the bacteriophage T4. II. Biological activity of Dna fragments.
    Veldhuisen G; Poelman MC; Cohen JA
    Biochim Biophys Acta; 1968 Jun; 161(1):109-14. PubMed ID: 4873555
    [No Abstract]   [Full Text] [Related]  

  • 52. Renaturation of T4 bacteriophage deoxyribonucleic acid in the presence of excess heterologous DNA.
    Walker PM; McCallum M
    J Mol Biol; 1966 Jun; 18(1):215-7. PubMed ID: 5965051
    [No Abstract]   [Full Text] [Related]  

  • 53. Early intracellular events in the replication of T4 phage DNA. 3. Random utilization of phage-coded enzymes by simultaneously infecting phage.
    Kozinski AW; Kozinski PB
    Proc Natl Acad Sci U S A; 1967 Jun; 57(6):1705-11. PubMed ID: 5231405
    [No Abstract]   [Full Text] [Related]  

  • 54. Recombination in bacteriophage T4.
    Mosig G
    Adv Genet; 1970; 15():1-53. PubMed ID: 4936424
    [No Abstract]   [Full Text] [Related]  

  • 55. COMPLEMENTARY STRUCTURE OF INTERACTING SITES AT THE ENDS OF LAMBDA DNA MOLECULES.
    HERSHEY AD; BURGI E
    Proc Natl Acad Sci U S A; 1965 Feb; 53(2):325-8. PubMed ID: 14294064
    [No Abstract]   [Full Text] [Related]  

  • 56. THE ULTRACYTOCHEMISTRY OF ESCHERICHIA COLI B CELLS INFECTED BY BACTERIOPHAGE T2.
    KOIKE M; NAKAYAMA Y; MATSUO T; TAKEYA K
    Virology; 1965 Jan; 25():159-62. PubMed ID: 14277076
    [No Abstract]   [Full Text] [Related]  

  • 57. The induction of tRNA synthesis following T4 phage infection.
    Littauer UZ; Daniel V
    J Cell Physiol; 1969 Oct; 74(2):Suppl 1:71-80. PubMed ID: 4902823
    [No Abstract]   [Full Text] [Related]  

  • 58. The relation between radiation stability and DNA replication of phage T4.
    Ritchie DA; Symonds N
    J Gen Virol; 1970 Aug; 8(2):121-31. PubMed ID: 4920493
    [No Abstract]   [Full Text] [Related]  

  • 59. ON THE SPECIFICITY OF BACTERIOPHAGE-INDUCED HYDROXYMETHYLCYTOSINE GLUCOSYLTRANSFERASES. I. SPECIFICITY DIFFERENCE BETWEEN THE HYDROXYMETHYLCYTOSINE ALPHA-GLUCOSYLTRANSFERASES INDUCED BY BACTERIOPHAGES T2, T4 AND T6.
    DE WAARD A
    Biochim Biophys Acta; 1964 Nov; 92():286-304. PubMed ID: 14256800
    [No Abstract]   [Full Text] [Related]  

  • 60. Low-molecular-weight T4 phage-specific RNA.
    Baguley BC; Bergquist PL; Ralph RK
    Biochim Biophys Acta; 1967 Mar; 138(1):51-6. PubMed ID: 4860429
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.