These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 14314031)

  • 1. CARBON METABOLISM OF C-14-LABELED AMINO ACIDS IN WHEAT LEAVES. 3. FURTHER STUDIES ON THE ROLE OF SERINE IN GLYCINE METABOLISM.
    WANG D; BURRIS RH
    Plant Physiol; 1965 May; 40(3):415-8. PubMed ID: 14314031
    [No Abstract]   [Full Text] [Related]  

  • 2. STUDIES ON WHEAT PLANTS USING CARBON-14 COMPOUNDS. XXI. THE METABOLISM OF GLYCINE-2-C14.
    MCCONNELL WB
    Can J Biochem; 1964 Sep; 42():1293-9. PubMed ID: 14217235
    [No Abstract]   [Full Text] [Related]  

  • 3. CARBON METABOLISM OF GLYCINE AND SERINE IN RELATION TO THE SYNTHESIS OF ORGANIC ACIDS AND A GUANINE DERIVATIVE.
    WANG D; BURRIS RH
    Plant Physiol; 1965 May; 40(3):419-24. PubMed ID: 14314032
    [No Abstract]   [Full Text] [Related]  

  • 4. THE IMPORTANCE OF GLYOXYLATE IN AMINO ACID BIOSYNTHESIS IN PLANTS.
    SINHA SK; COSSINS EA
    Biochem J; 1965 Jul; 96(1):254-61. PubMed ID: 14343140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on wheat plants using carbon-14 compounds. IX. Radioactivity of wheat following injection of formate-C14 and glycine-1-C14 with special reference to serine labelling.
    McCONNELL WB; BILINSKI E
    Can J Biochem Physiol; 1959 Apr; 37(4):549-55. PubMed ID: 13638875
    [No Abstract]   [Full Text] [Related]  

  • 6. Studies on wheat plants using carbon-14 compounds. XII. Utilization of serine-C14 with special reference to glycine labelling.
    NATH R; MCCONNELL WB
    Can J Biochem Physiol; 1960 Jun; 38():533-8. PubMed ID: 14426143
    [No Abstract]   [Full Text] [Related]  

  • 7. Biosynthesis of chlorophyll from acetate-1-C14 and glycine-1-C14 by wheat leaves.
    ROBERTS DW; PERKINS HJ
    Can J Biochem Physiol; 1962 Jul; 40():973-4. PubMed ID: 14492757
    [No Abstract]   [Full Text] [Related]  

  • 8. Distribution of C14 in glycine and serine of liver protein following the administration of labeled glycine.
    GOLDSWORTHY PD; WINNICK T; GREENBERG DM
    J Biol Chem; 1949 Aug; 180(1):341-3. PubMed ID: 18133399
    [No Abstract]   [Full Text] [Related]  

  • 9. The formation of glycine and serine; the influence of the administration of glycine, DL-serine and other compounds on levels of tissue glycine and serine.
    SIMKIN JL; WHITE K
    Biochem J; 1957 Oct; 67(2):287-91. PubMed ID: 13471548
    [No Abstract]   [Full Text] [Related]  

  • 10. Role of formaldehyde in direct formation of glycine and serine in bean leaves.
    Nosticzius A
    Acta Biol Hung; 1998; 49(2-4):193-9. PubMed ID: 10526961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GLYCINE SYNTHESIS AND METABOLISM IN ESCHERICHIA COLI.
    PIZER LI
    J Bacteriol; 1965 Apr; 89(4):1145-50. PubMed ID: 14276110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on wheat plants using carbon-14 compounds. 13. Incorporation of alpha-amino adipic acid-6-C14 in wheat plants.
    NATH R; McCONNELL WB
    Can J Biochem Physiol; 1960 Aug; 38():903-8. PubMed ID: 13727908
    [No Abstract]   [Full Text] [Related]  

  • 13. ENTRY OF GLUCOSE CARBON INTO AMINO ACIDS OF RAT BRAIN AND LIVER IN VIVO AFTER INJECTION OF UNIFORMLY 14-C-LABELLED GLUCOSE.
    GAITONDE MK; DAHL DR; ELLIOTT KA
    Biochem J; 1965 Feb; 94(2):345-52. PubMed ID: 14348195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effects of amino acid-N and ammonium-N on wheat seedlings under sterile culture].
    Mo L; Wu L; Tao Q
    Ying Yong Sheng Tai Xue Bao; 2003 Feb; 14(2):184-6. PubMed ID: 12827867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PROTEIN METABOLISM IN THE RUMEN. I. ABSORPTION OF GLYCINE AND OTHER AMINO ACIDS.
    COOK RM; BROWN RE; DAVIS CL
    J Dairy Sci; 1965 Apr; 48():475-83. PubMed ID: 14282444
    [No Abstract]   [Full Text] [Related]  

  • 16. Intramolecular labelling of sucrose made by leaves from [14C)carbon dioxide or [3-14C]serine.
    Bird IF; Cornelius MJ; Keys AJ; Whittingham CP
    Biochem J; 1978 Apr; 172(1):23-7. PubMed ID: 656073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Transition of glycine and threonine into choline].
    KAWAKAMI T
    Keio J Med; 1961; 38():665-70. PubMed ID: 14454577
    [No Abstract]   [Full Text] [Related]  

  • 18. Antagonisms in the utilization of D-amino acids by lactic acid bacteria. II. Influence of DL-serine and glycine on the utilization of D-alanine.
    CAMIEN MN; DUNN MS
    J Biol Chem; 1950 Aug; 185(2):553-9. PubMed ID: 14774396
    [No Abstract]   [Full Text] [Related]  

  • 19. Distribution of radioactive carbon among certain amino acids of liver homogenate protein, following uptake experiments with labeled glycine.
    WINNICK T; MORING-CLAESSON I; GREENBERG DM
    J Biol Chem; 1948 Aug; 175(1):127-32. PubMed ID: 18873287
    [No Abstract]   [Full Text] [Related]  

  • 20. Carbon Metabolism of C-Labeled Amino Acids in Wheat Leaves. II. Serine & its Role in Glycine Metabolism.
    Wang D; Burris RH
    Plant Physiol; 1963 Jul; 38(4):430-9. PubMed ID: 16655811
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.