These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 14314346)

  • 1. POSSIBLE PARTIAL REACTIONS OF THE PHOTOPHOSPHORYLATION PROCESS IN CHROMATOPHORES FROM RHODOSPIRILLUM RUBRUM.
    HORIO T; NISHIKAWA K; KATSUMATA M; YAMASHITA J
    Biochim Biophys Acta; 1965 Mar; 94():371-82. PubMed ID: 14314346
    [No Abstract]   [Full Text] [Related]  

  • 2. SITES OF PHOTOSYNTHETIC ELECTRON-TRANSPORT SYSTEMS COUPLING PHOSPHORYLATION WITH CHROMATOPHORES FROM RHODOSPIRILLUM RUBRUM.
    HORIO T; YAMASHITA J
    Biochim Biophys Acta; 1964 Sep; 88():237-50. PubMed ID: 14249833
    [No Abstract]   [Full Text] [Related]  

  • 3. ADENOSINE DIPHOSPHATE-ADENOSINE TRIPHOSPHATE EXCHANGE REACTION WITH CHROMATOPHORES FROM RHODOSPIRILLUM RUBRUM.
    HORIO T; NISHKAWA K; YAMASHITA J
    J Biochem; 1964 Mar; 55():327-32. PubMed ID: 14162515
    [No Abstract]   [Full Text] [Related]  

  • 4. LIGHT STIMULATION OF THE RESPIRATORY ACTIVITY OF RHODOSPIRILLUM RUBRUM CHROMATOPHORES.
    KIKUCHI G; YAMADA H; SATO H
    Biochim Biophys Acta; 1964 May; 79():446-55. PubMed ID: 14179444
    [No Abstract]   [Full Text] [Related]  

  • 5. Photophosphorylation in presence and absence of added adenosine diphosphate in chromatophores from Rhodospirillum rubrum.
    Horio T; von Stedingk LV; Baltscheffsky H
    Acta Chem Scand; 1966; 20(1):1-10. PubMed ID: 5933524
    [No Abstract]   [Full Text] [Related]  

  • 6. Role of photophosphorylation coupling factor in energy conversion by depleted chromatophores of Rhodospirillum rubrum.
    Gromet-Elhanan Z
    J Biol Chem; 1974 Apr; 249(8):2522-7. PubMed ID: 4362685
    [No Abstract]   [Full Text] [Related]  

  • 7. Synthesis and possible character of a high-energy intermediate in bacterial photophosphorylation.
    Horio T; Nishikawa K; Yamashita J
    Biochem J; 1966 Jan; 98(1):321-9. PubMed ID: 5938657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between photosynthetic and oxidative phosphorylations in chromatophores from light-grown cells of Rhodospirillum rubrum.
    Yamashita J; Yoshimura S; Matuo Y; Horio T
    Biochim Biophys Acta; 1967 Jul; 143(1):154-72. PubMed ID: 4292784
    [No Abstract]   [Full Text] [Related]  

  • 9. [Photophosphorylation and binding of phosphates to chromatophores in Rhodospirillum rubrum].
    Lutz HU; Bachofen R
    Zentralbl Bakteriol Orig A; 1972 May; 220(1):387-93. PubMed ID: 4145605
    [No Abstract]   [Full Text] [Related]  

  • 10. Formation and decomposition of pyrophosphate related to bacterial photophosphorylation.
    Nishikawa K; Hosoi K; Suzuki J; Yoshimura S; Horio T
    J Biochem; 1973 Mar; 73(3):537-53. PubMed ID: 4353266
    [No Abstract]   [Full Text] [Related]  

  • 11. Studies on bacterial photophosphorylation. V. Stoichiometry and kinetics of photophosphorylation and adenosine-5'-triphosphatase and effects of divalent metal ions.
    NISHIMURA M
    Biochim Biophys Acta; 1962 Oct; 64():345-52. PubMed ID: 13938790
    [No Abstract]   [Full Text] [Related]  

  • 12. CHANGES IN LIGHT-ABSORPTION AND LIGHT-SCATTERING PROPERTIES OF SPINACH CHLOROPLASTS UPON ILLUMINATION: RELATIONSHIP TO PHOTOPHOSPHORYLATION.
    DILLEY RA; VERNON LP
    Biochemistry; 1964 Jun; 3():817-24. PubMed ID: 14211622
    [No Abstract]   [Full Text] [Related]  

  • 13. Inhibition of energy conservation reactions in chromatophores of Rhodospirillum rubrum by antibiotics.
    Lucero H; Lescano WI; Vallejos RH
    Arch Biochem Biophys; 1978 Feb; 186(1):9-14. PubMed ID: 147053
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of aurovertin on energy transfer reactions in Rhodospirillum rubrum chromatophores.
    Ravizzini RA; Lescano WI; Vallejos RH
    FEBS Lett; 1975 Oct; 58(1):285-8. PubMed ID: 131702
    [No Abstract]   [Full Text] [Related]  

  • 15. Bound nucleotides and phosphorylation in Rhodospirillum rubrum.
    Harris DA; Baltscheffsky M
    Biochem Biophys Res Commun; 1979 Feb; 86(4):1248-55. PubMed ID: 155454
    [No Abstract]   [Full Text] [Related]  

  • 16. Photosynthetic adenosine triphosphate formation and photo-reduction of diphosphopyridine nucleotide with chromatophores of Rhodospirillum rubrum.
    HORIO T; YAMASHITA J; NISHIKAWA K
    Biochim Biophys Acta; 1963 Jan; 66():37-49. PubMed ID: 13954899
    [No Abstract]   [Full Text] [Related]  

  • 17. Studies on the light-dependent synthesis of inorganic pyrophosphate by Rhodospirillum rubrum chromatophores.
    Guillory RJ; Fisher RR
    Biochem J; 1972 Sep; 129(2):571-81. PubMed ID: 4345276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on bacterial photophosphorylation. II. Effects of reagents and temperature on light-induced and dark phases of photophosphorylation in Rhodospirillum rubrum chromatophores.
    NISHIMURA M
    Biochim Biophys Acta; 1962 Feb; 57():96-103. PubMed ID: 14479978
    [No Abstract]   [Full Text] [Related]  

  • 19. Oxidation-reduction potential-dependent adenosine triphosphatase activity of chromatophores from Rhodospirillum rubrum.
    Horiuti Y; Nishikawa K; Horio T
    J Biochem; 1968 Nov; 64(5):577-87. PubMed ID: 4236985
    [No Abstract]   [Full Text] [Related]  

  • 20. Light-induced electron transfer reactions and adenosine triphosphate formation by Rhodospirillum rubrum chromatophores.
    Zaugg WS; Vernon LP; Helmer G
    Arch Biochem Biophys; 1967 Mar; 119(1):560-71. PubMed ID: 6052446
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.