These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 14319197)

  • 41. [RELATION BETWEEN GLUCOSE AND KETONE BODY METABOLISM IN EVISCERATED, NEPHRECTOMIZED RATS AND THE EFFECT OF OXALOACETATE, CITRATE AND PYRUVATE ON PERIPHERAL UPTAKE OF KETONE BODIES].
    GARLEPP HE; SOELING HD; CREUTZFELDT W
    Biochim Biophys Acta; 1965 May; 100():544-52. PubMed ID: 14347950
    [No Abstract]   [Full Text] [Related]  

  • 42. Lipogenesis from ketone bodies in perfused livers from streptozocin-induced diabetic rats.
    Freed LE; Endemann G; Tomera JF; Gavino VC; Brunengraber H
    Diabetes; 1988 Jan; 37(1):50-5. PubMed ID: 3335277
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enzymes of ketone body metabolism. I. Purification of an acetoacetate-synthesizing enzyme from ox liver.
    STERN JR; DRUMMOND GI; COON MJ; DEL CAMPILLO A
    J Biol Chem; 1960 Feb; 235():313-7. PubMed ID: 13834445
    [No Abstract]   [Full Text] [Related]  

  • 44. The metabolism of ketone bodies in developing human brain: development of ketone-body-utilizing enzymes and ketone bodies as precursors for lipid synthesis.
    Patel MS; Johnson CA; Rajan R; Owen OE
    J Neurochem; 1975 Dec; 25(6):905-8. PubMed ID: 1206409
    [No Abstract]   [Full Text] [Related]  

  • 45. The glucose-fatty acid-ketone body cycle. Role of ketone bodies as respiratory substrates and metabolic signals.
    Stanley JC
    Br J Anaesth; 1981 Feb; 53(2):131-6. PubMed ID: 7470350
    [No Abstract]   [Full Text] [Related]  

  • 46. Comparison of acylcarnitines and pyruvate as substrates for rat-liver mitochondria.
    Bremer J
    Biochim Biophys Acta; 1966 Feb; 116(1):1-11. PubMed ID: 5942460
    [No Abstract]   [Full Text] [Related]  

  • 47. Relative utilization of fatty acids for synthesis of ketone bodies and complex lipids in the liver of developing rats.
    Yeh YY; Streuli VL; Zee P
    Lipids; 1977 Apr; 12(4):367-74. PubMed ID: 857111
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Acetoacetate formation in liver. III. On the mechanism of acetoacetate formation from palmitic acid.
    BROWN GW; CHAPMAN DD; MATHESON HR; CHAIKOFF IL; DAUBEN WG
    J Biol Chem; 1954 Aug; 209(2):537-48. PubMed ID: 13192106
    [No Abstract]   [Full Text] [Related]  

  • 49. Enzymes of ketone body metabolism. II. Properties of an acetoacetate-synthesizing enzyme prepared from ox liver.
    DRUMMOND GI; STERN JR
    J Biol Chem; 1960 Feb; 235():318-25. PubMed ID: 13818236
    [No Abstract]   [Full Text] [Related]  

  • 50. Relative importance of acetate, acetoacetate and D-beta-OH-butyrate in the transport of acetyl CoA from the mitochondria to the cytoplasm for fatty acid synthesis in mice.
    Rous S
    Life Sci; 1976 Mar; 18(6):633-8. PubMed ID: 1263748
    [No Abstract]   [Full Text] [Related]  

  • 51. Altered hepatic metabolism of fatty acids in rats fed a hypolipidaemic drug, fenofibrate.
    Yamamoto K; Fukuda N; Zhang L; Sakai T
    Pharmacol Res; 1996 Jun; 33(6):337-42. PubMed ID: 8971955
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inhibition of hormonal stimulation of lipolysis in perfused rat heart by ketone bodies.
    Hron WT; Menahan LA; Lech JJ
    J Mol Cell Cardiol; 1978 Feb; 10(2):161-74. PubMed ID: 204794
    [No Abstract]   [Full Text] [Related]  

  • 53. Rates of ketone-body formation in the perfused rat liver.
    Krebs HA; Wallace PG; Hems R; Freedland RA
    Biochem J; 1969 May; 112(5):595-600. PubMed ID: 5822063
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Octanoate metabolism in isolated hepatocytes and mitochondria from fetal, newborn and adult rabbit. Evidence for a high capacity for octanoate esterification in term fetal liver.
    Pégorier JP; Duée PH; Clouet P; Kohl C; Herbin C; Girard J
    Eur J Biochem; 1989 Oct; 184(3):681-6. PubMed ID: 2806250
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interrelationships and metabolic effects of fatty acids in the perfused rat liver at hyperthermic temperatures.
    Denor PF; Sonsalla JC; Menahan LA; Skibba JL
    Cancer Biochem Biophys; 1985 Jun; 8(1):9-22. PubMed ID: 4027946
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct effects of fructose metabolism on fatty acid oxidation in a recombined rat liver mitochondria-hish speed supernatant system.
    Prager GN; Ontko JA
    Biochim Biophys Acta; 1976 Mar; 424(3):386-95. PubMed ID: 1259967
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relationships between the concentration of liver metabolites and ketogenesis in chickens fed "carbohydrate-free" diets.
    Allred JB
    J Nutr; 1969 Sep; 99(1):101-8. PubMed ID: 4309553
    [No Abstract]   [Full Text] [Related]  

  • 58. [EFFECT OF INSULIN AND GLUCOSE ON UPTAKE OF KETONE BODIES BY TOTALLY EVISCERATED, NORMAL, STARVED AND ALLOXAN DIABETIC RATS].
    SOELING HD; GARLEPP HJ; CREUTZFELDE W
    Biochim Biophys Acta; 1965 May; 100():530-43. PubMed ID: 14348526
    [No Abstract]   [Full Text] [Related]  

  • 59. Activities of enzymes of fat and ketone-body metabolism and effects of starvation on blood concentrations of glucose and fat fuels in teleost and elasmobranch fish.
    Zammit VA; Newsholme EA
    Biochem J; 1979 Nov; 184(2):313-22. PubMed ID: 534530
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Studies on the control of fatty acid oxidation in liver preparations from chick embryos.
    Koerker DJ; Fritz IB
    Can J Biochem; 1970 Apr; 48(4):418-24. PubMed ID: 5418963
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.