These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1057 related articles for article (PubMed ID: 1432065)
1. Intravenous morphine-induced activation of vagal afferents: peripheral, spinal, and CNS substrates mediating inhibition of spinal nociception and cardiovascular responses. Randich A; Thurston CL; Ludwig PS; Robertson JD; Rasmussen C J Neurophysiol; 1992 Oct; 68(4):1027-45. PubMed ID: 1432065 [TBL] [Abstract][Full Text] [Related]
2. Electrical stimulation of cervical vagal afferents. I. Central relays for modulation of spinal nociceptive transmission. Ren K; Randich A; Gebhart GF J Neurophysiol; 1990 Oct; 64(4):1098-114. PubMed ID: 2175352 [TBL] [Abstract][Full Text] [Related]
3. Electrical stimulation of cervical vagal afferents. II. Central relays for behavioral antinociception and arterial blood pressure decreases. Randich A; Ren K; Gebhart GF J Neurophysiol; 1990 Oct; 64(4):1115-24. PubMed ID: 2258737 [TBL] [Abstract][Full Text] [Related]
4. Antinociception and cardiovascular responses produced by intravenous morphine: the role of vagal afferents. Randich A; Thurston CL; Ludwig PS; Timmerman MR; Gebhart GF Brain Res; 1991 Mar; 543(2):256-70. PubMed ID: 2059834 [TBL] [Abstract][Full Text] [Related]
5. Electrical stimulation of the subdiaphragmatic vagus in rats: inhibition of heat-evoked responses of spinal dorsal horn neurons and central substrates mediating inhibition of the nociceptive tail flick reflex. Thurston CL; Randich A Pain; 1992 Dec; 51(3):349-365. PubMed ID: 1491862 [TBL] [Abstract][Full Text] [Related]
6. Role of vagal afferents and the rostral ventral medulla in intravenous serotonin-induced changes in nociception and arterial blood pressure. Thurston-Stanfield CL; Ranieri JT; Vallabhapurapu R; Barnes-Noble D Physiol Behav; 1999 Nov; 67(5):753-67. PubMed ID: 10604848 [TBL] [Abstract][Full Text] [Related]
7. Brainstem and spinal pathways mediating descending inhibition from the medullary lateral reticular nucleus in the rat. Janss AJ; Gebhart GF Brain Res; 1988 Feb; 440(1):109-22. PubMed ID: 2896043 [TBL] [Abstract][Full Text] [Related]
8. Vagal afferent-mediated inhibition of a nociceptive reflex by intravenous serotonin in the rat. I. Characterization. Meller ST; Lewis SJ; Ness TJ; Brody MJ; Gebhart GF Brain Res; 1990 Jul; 524(1):90-100. PubMed ID: 2400935 [TBL] [Abstract][Full Text] [Related]
9. The use of specific opioid agonists and antagonists to delineate the vagally mediated antinociceptive and cardiovascular effects of intravenous morphine. Randich A; Robertson JD; Willingham T Brain Res; 1993 Feb; 603(2):186-200. PubMed ID: 8096421 [TBL] [Abstract][Full Text] [Related]
10. Stimulation-produced spinal inhibition from the midbrain in the rat is mediated by an excitatory amino acid neurotransmitter in the medial medulla. Aimone LD; Gebhart GF J Neurosci; 1986 Jun; 6(6):1803-13. PubMed ID: 2872283 [TBL] [Abstract][Full Text] [Related]
11. Vagal afferent stimulation-produced effects on nociception in capsaicin-treated rats. Ren K; Zhuo M; Randich A; Gebhart GF J Neurophysiol; 1993 May; 69(5):1530-40. PubMed ID: 8389827 [TBL] [Abstract][Full Text] [Related]
12. Vagal afferent modulation of a nociceptive reflex in rats: involvement of spinal opioid and monoamine receptors. Ren K; Randich A; Gebhart GF Brain Res; 1988 Apr; 446(2):285-94. PubMed ID: 2836031 [TBL] [Abstract][Full Text] [Related]
13. Circuitry linking opioid-sensitive nociceptive modulatory systems in periaqueductal gray and spinal cord with rostral ventromedial medulla. Morgan MM; Heinricher MM; Fields HL Neuroscience; 1992; 47(4):863-71. PubMed ID: 1579215 [TBL] [Abstract][Full Text] [Related]
14. Nuclei within the rostral ventromedial medulla mediating morphine antinociception from the periaqueductal gray. Urban MO; Smith DJ Brain Res; 1994 Jul; 652(1):9-16. PubMed ID: 7953726 [TBL] [Abstract][Full Text] [Related]
15. Antinociception produced by microinjection of morphine in the rat periaqueductal gray is enhanced in the foot, but not the tail, by intrathecal injection of alpha1-adrenoceptor antagonists. Fang F; Proudfit HK Brain Res; 1998 Apr; 790(1-2):14-24. PubMed ID: 9593804 [TBL] [Abstract][Full Text] [Related]
16. Spinal pathways mediating tonic, coeruleospinal, and raphe-spinal descending inhibition in the rat. Jones SL; Gebhart GF J Neurophysiol; 1987 Jul; 58(1):138-59. PubMed ID: 3612222 [TBL] [Abstract][Full Text] [Related]
17. Spinal pathways mediating tonic or stimulation-produced descending inhibition from the periaqueductal gray or nucleus raphe magnus are separate in the cat. Sandkühler J; Fu QG; Zimmermann M J Neurophysiol; 1987 Aug; 58(2):327-41. PubMed ID: 3655871 [TBL] [Abstract][Full Text] [Related]
18. Medullary substrates mediating antinociception produced by electrical stimulation of the vagus. Randich A; Aicher SA Brain Res; 1988 Mar; 445(1):68-76. PubMed ID: 3365559 [TBL] [Abstract][Full Text] [Related]
19. Bradykinin modulation of a spinal nociceptive reflex in the rat. Bauer MB; Meller ST; Gebhart GF Brain Res; 1992 Apr; 578(1-2):186-96. PubMed ID: 1511277 [TBL] [Abstract][Full Text] [Related]
20. Medullary substrates of descending spinal inhibition activated by intravenous administration of [D-Ala2]methionine enkephalinamide in the rat. Randich A; Aimone LD; Gebhart GF Brain Res; 1987 May; 411(2):236-47. PubMed ID: 3607431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]