These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 1432068)

  • 21. Preservation of force output through progressive reduction of stimulation frequency in human quadriceps femoris muscle.
    Binder-Macleod SA; Guerin T
    Phys Ther; 1990 Oct; 70(10):619-25. PubMed ID: 2217541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrical stimulation factors in potentiation of human quadriceps femoris.
    Binder-Macleod SA; Dean JC; Ding J
    Muscle Nerve; 2002 Feb; 25(2):271-9. PubMed ID: 11870697
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of frequency and pulse duration on human muscle fatigue during repetitive electrical stimulation.
    Kesar T; Binder-Macleod S
    Exp Physiol; 2006 Nov; 91(6):967-76. PubMed ID: 16873456
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contractile properties of single motor units in human toe extensors assessed by intraneural motor axon stimulation.
    Macefield VG; Fuglevand AJ; Bigland-Ritchie B
    J Neurophysiol; 1996 Jun; 75(6):2509-19. PubMed ID: 8793760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A simple model of force generation by skeletal muscle during dynamic isometric contractions.
    Bobet J; Stein RB
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):1010-6. PubMed ID: 9691575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Force-frequency relationship and potentiation in mammalian skeletal muscle.
    MacIntosh BR; Willis JC
    J Appl Physiol (1985); 2000 Jun; 88(6):2088-96. PubMed ID: 10846022
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stimulation pulse characteristics and electrode configuration determine site of excitation in isolated mammalian skeletal muscle: implications for fatigue.
    Cairns SP; Chin ER; Renaud JM
    J Appl Physiol (1985); 2007 Jul; 103(1):359-68. PubMed ID: 17412789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new stimulation protocol for cardiac assist using the latissimus dorsi muscle.
    Lucas CM; Dubelaar ML; Van der Veen FH; Kloosterman-Castro-Ravelo E; Havenith M; Habets J; Van der Nagel T; Penn OC; Wellens HJ
    Pacing Clin Electrophysiol; 1993 Oct; 16(10):2012-21. PubMed ID: 7694248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gradation of force output in normal fast and slow muscles of the rat.
    Hennig R; Lømo T
    Acta Physiol Scand; 1987 May; 130(1):133-42. PubMed ID: 3591385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of activation frequency on dynamic performance of human fresh and fatigued muscles.
    Lee SC; Binder-Macleod SA
    J Appl Physiol (1985); 2000 Jun; 88(6):2166-75. PubMed ID: 10846032
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fatigability and variable-frequency train stimulation of human skeletal muscles.
    Bickel CS; Slade JM; Warren GL; Dudley GA
    Phys Ther; 2003 Apr; 83(4):366-73. PubMed ID: 12665407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of activation pattern on nonisometric human skeletal muscle performance.
    Maladen RD; Perumal R; Wexler AS; Binder-Macleod SA
    J Appl Physiol (1985); 2007 May; 102(5):1985-91. PubMed ID: 17272410
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Force output of cat motor units stimulated with trains of linearly varying frequency.
    Binder-Macleod SA; Clamann HP
    J Neurophysiol; 1989 Jan; 61(1):208-17. PubMed ID: 2918346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combination of variable frequency train stimulation and K+ channel blockade to augment skeletal muscle force.
    van Lunteren E; Moyer M
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):288-94. PubMed ID: 15218942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of activation frequency and force on low-frequency fatigue in human skeletal muscle.
    Binder-Macleod SA; Russ DW
    J Appl Physiol (1985); 1999 Apr; 86(4):1337-46. PubMed ID: 10194220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic optimization of stimulation frequency to reduce isometric muscle fatigue using a modified Hill-Huxley model.
    Doll BD; Kirsch NA; Bao X; Dicianno BE; Sharma N
    Muscle Nerve; 2018 Apr; 57(4):634-641. PubMed ID: 28833237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Force generated by fast motor units of the rat medial gastrocnemius muscle during stimulation with pulses at variable intervals.
    Krutki P; Pogrzebna M; Drzymała H; Raikova R; Celichowski J
    J Physiol Pharmacol; 2008 Mar; 59(1):85-100. PubMed ID: 18441390
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Doublet potentiation during eccentric and concentric contractions of cat soleus muscle.
    Sandercock TG; Heckman CJ
    J Appl Physiol (1985); 1997 Apr; 82(4):1219-28. PubMed ID: 9104859
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains.
    Ding J; Wexler AS; Binder-Macleod SA
    J Appl Physiol (1985); 2000 Mar; 88(3):917-25. PubMed ID: 10710386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The optimal stimulation pattern for skeletal muscle is dependent on muscle length.
    Mela P; Veltink PH; Huijing PA; Salmons S; Jarvis JC
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):85-93. PubMed ID: 12236451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.