These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 1432097)

  • 1. Posttetanic potentiation at the crayfish neuromuscular junction is dependent on both intracellular calcium and sodium ion accumulation.
    Mulkey RM; Zucker RS
    J Neurosci; 1992 Nov; 12(11):4327-36. PubMed ID: 1432097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium in motor nerve terminals associated with posttetanic potentiation.
    Delaney KR; Zucker RS; Tank DW
    J Neurosci; 1989 Oct; 9(10):3558-67. PubMed ID: 2795140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles for mitochondrial and reverse mode Na+/Ca2+ exchange and the plasmalemma Ca2+ ATPase in post-tetanic potentiation at crayfish neuromuscular junctions.
    Zhong N; Beaumont V; Zucker RS
    J Neurosci; 2001 Dec; 21(24):9598-607. PubMed ID: 11739570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuromodulation of activity-dependent synaptic enhancement at crayfish neuromuscular junction.
    Qian SM; Delaney KR
    Brain Res; 1997 Oct; 771(2):259-70. PubMed ID: 9401746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological differences between strong and weak frog neuromuscular junctions: a study involving tetanic and posttetanic potentiation.
    Pawson PA; Grinnell AD
    J Neurosci; 1990 Jun; 10(6):1769-78. PubMed ID: 2113085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monensin can transport calcium across cell membranes in a sodium independent fashion in the crayfish Procambarus clarkii.
    Mulkey RM; Zucker RS
    Neurosci Lett; 1992 Aug; 143(1-2):115-8. PubMed ID: 1436653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic basis of tetanic and post-tetanic potentiation at a mammalian neuromuscular junction.
    Nussinovitch I; Rahamimoff R
    J Physiol; 1988 Feb; 396():435-55. PubMed ID: 2457692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presynaptic calcium and serotonin-mediated enhancement of transmitter release at crayfish neuromuscular junction.
    Delaney K; Tank DW; Zucker RS
    J Neurosci; 1991 Sep; 11(9):2631-43. PubMed ID: 1679119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium and transmitter release.
    Zucker RS
    J Physiol Paris; 1993; 87(1):25-36. PubMed ID: 7905762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased Ca2+ influx through Na+/Ca2+ exchanger during long-term facilitation at crayfish neuromuscular junctions.
    Minami A; Xia YF; Zucker RS
    J Physiol; 2007 Dec; 585(Pt 2):413-27. PubMed ID: 17916607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation of presynaptic and postsynaptic events during establishment of long-term facilitation at crayfish neuromuscular junction.
    Wojtowicz JM; Atwood HL
    J Neurophysiol; 1985 Aug; 54(2):220-30. PubMed ID: 2411884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Na(+)-Ca2+ exchange in the regulation of vascular smooth muscle tension.
    Motley ED; Paul RJ; Matlib MA
    Am J Physiol; 1993 Apr; 264(4 Pt 2):H1028-40. PubMed ID: 8386477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between facilitation and presynaptic inhibition at the crayfish neuromuscular junction.
    DeMill CM; Delaney KR
    J Exp Biol; 2005 Jun; 208(Pt 11):2135-45. PubMed ID: 15914657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presynaptic calcium-activated potassium channels and calcium channels at a crayfish neuromuscular junction.
    Blundon JA; Wright SN; Brodwick MS; Bittner GD
    J Neurophysiol; 1995 Jan; 73(1):178-89. PubMed ID: 7714563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of the Na-Ca exchanger in isolated heart cells. II. Beat-dependent activation in normal cells by intracellular calcium.
    Haworth RA; Goknur AB
    Circ Res; 1991 Dec; 69(6):1514-24. PubMed ID: 1659502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presynaptic facilitation at the crayfish neuromuscular junction. Role of calcium-activated potassium conductance.
    Sivaramakrishnan S; Brodwick MS; Bittner GD
    J Gen Physiol; 1991 Dec; 98(6):1181-96. PubMed ID: 1783897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the endogenous Ca2+ buffers at the presynaptic terminals of the crayfish neuromuscular junction.
    Lin JW; Fu Q; Allana T
    J Neurophysiol; 2005 Jul; 94(1):377-86. PubMed ID: 15985697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A note of the mechanism by which inhibitors of the sodium pump accelerate spontaneous release of transmitter from motor nerve terminals.
    Baker PF; Crawford AC
    J Physiol; 1975 May; 247(1):209-26. PubMed ID: 166163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium released by photolysis of DM-nitrophen triggers transmitter release at the crayfish neuromuscular junction.
    Mulkey RM; Zucker RS
    J Physiol; 1993 Mar; 462():243-60. PubMed ID: 8101226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic properties of the sodium-calcium exchanger in rat brain synaptosomes.
    Fontana G; Rogowski RS; Blaustein MP
    J Physiol; 1995 Jun; 485 ( Pt 2)(Pt 2):349-64. PubMed ID: 7666363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.