These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 14324920)

  • 1. POSTNATAL GROWTH OF ARTERIOLES IN THE HUMAN CEREBRAL CORTEX.
    RHODES AJ; HYDE JB
    Growth; 1965 Jun; 29():173-82. PubMed ID: 14324920
    [No Abstract]   [Full Text] [Related]  

  • 2. Neurogenic control of parenchymal arterioles in the cerebral cortex.
    Hotta H
    Prog Brain Res; 2016; 225():3-39. PubMed ID: 27130409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microvascular basis for growth of small infarcts following occlusion of single penetrating arterioles in mouse cortex.
    Taylor ZJ; Hui ES; Watson AN; Nie X; Deardorff RL; Jensen JH; Helpern JA; Shih AY
    J Cereb Blood Flow Metab; 2016 Aug; 36(8):1357-73. PubMed ID: 26661182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of blood flow and volume in arterioles and venules of the rat cerebral cortex using functional micro-ultrasound.
    van Raaij ME; Lindvere L; Dorr A; He J; Sahota B; Foster FS; Stefanovic B
    Neuroimage; 2012 Nov; 63(3):1030-7. PubMed ID: 22871388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tetrahydrobiopterin rescues impaired responses of cerebral resistance arterioles during type 1 diabetes.
    Mayhan WG; Arrick DM
    Diab Vasc Dis Res; 2017 Jan; 14(1):33-39. PubMed ID: 27941054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tortuosity and other vessel attributes for arterioles and venules of the human cerebral cortex.
    Lorthois S; Lauwers F; Cassot F
    Microvasc Res; 2014 Jan; 91():99-109. PubMed ID: 24291593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myogenic tone and neurogenic vasoconstriction in microcirculatory bed of rat cerebral cortex.
    Timkina MI
    Bull Exp Biol Med; 2000 Nov; 130(11):1045-7. PubMed ID: 11182811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scanning laser-Doppler flowmetry of rat cerebral circulation during cortical spreading depression.
    Nielsen AN; Fabricius M; Lauritzen M
    J Vasc Res; 2000; 37(6):513-22. PubMed ID: 11146405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radial columns in autoradiographs generated from tracer methods for measuring cerebral cortical blood flow.
    Bryan RM; Duckrow RB
    Am J Physiol; 1995 Aug; 269(2 Pt 2):H583-9. PubMed ID: 7653622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscarinic--but not nicotinic--acetylcholine receptors mediate a nitric oxide-dependent dilation in brain cortical arterioles: a possible role for the M5 receptor subtype.
    Elhusseiny A; Hamel E
    J Cereb Blood Flow Metab; 2000 Feb; 20(2):298-305. PubMed ID: 10698067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A statistical model of the penetrating arterioles and venules in the human cerebral cortex.
    El-Bouri WK; Payne SJ
    Microcirculation; 2016 Oct; 23(7):580-590. PubMed ID: 27647737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A note on the postnatal development of the human cerebral cortex.
    MEYER A
    Cereb Palsy Bull; 1961 Jun; 3():263-8. PubMed ID: 13769948
    [No Abstract]   [Full Text] [Related]  

  • 13. Functional behavior of microvascular mechanisms controlling blood supply to cerebral cortex during ischemic and early postischemic periods.
    Mchedlishvili GI; Baramidze DG
    Neuropatol Pol; 1974; 12(4):537-50. PubMed ID: 4449592
    [No Abstract]   [Full Text] [Related]  

  • 14. 5-Hydroxytryptamine innervation of vessels in the rat cerebral cortex. Immunohistochemical findings and hydrogen clearance study of rCBF.
    Itakura T; Yokote H; Kimura H; Kamei I; Nakakita K; Naka Y; Nakai K; Imai H; Komai N
    J Neurosurg; 1985 Jan; 62(1):42-7. PubMed ID: 3917293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood flow in single surface arterioles and venules on the mouse somatosensory cortex measured with videomicroscopy, fluorescent dextrans, nonoccluding fluorescent beads, and computer-assisted image analysis.
    Rovainen CM; Woolsey TA; Blocher NC; Wang DB; Robinson OF
    J Cereb Blood Flow Metab; 1993 May; 13(3):359-71. PubMed ID: 7683023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VIP-like immunoreactivity within neurons and perivascular neuronal processes of the human cerebral cortex.
    Benagiano V; Virgintino D; Maiorano E; Rizzi A; Palombo S; Roncali L; Ambrosi G
    Eur J Histochem; 1996; 40(1):53-6. PubMed ID: 8741100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced contractility of intraparenchymal arterioles after global cerebral ischaemia in rat - new insights into the development of delayed cerebral hypoperfusion.
    Spray S; Johansson SE; Radziwon-Balicka A; Haanes KA; Warfvinge K; Povlsen GK; Kelly PAT; Edvinsson L
    Acta Physiol (Oxf); 2017 Aug; 220(4):417-431. PubMed ID: 27864916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and remodeling of cerebral blood vessels and their flow in postnatal mice observed with in vivo videomicroscopy.
    Wang DB; Blocher NC; Spence ME; Rovainen CM; Woolsey TA
    J Cereb Blood Flow Metab; 1992 Nov; 12(6):935-46. PubMed ID: 1400647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling.
    Filosa JA; Bonev AD; Nelson MT
    Circ Res; 2004 Nov; 95(10):e73-81. PubMed ID: 15499024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaling laws for branching vessels of human cerebral cortex.
    Cassot F; Lauwers F; Lorthois S; Puwanarajah P; Duvernoy H
    Microcirculation; 2009 May; 16(4):331-44, 2 p following 344. PubMed ID: 19301179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.