These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 14327)

  • 1. Fluoresceinylthiocarbamyl-tRNATyr: a useful derivative of tRNATyr (E.coli) for physicochemical studies.
    Pingoud A; Kownatzki R; Maass G
    Nucleic Acids Res; 1977 Feb; 4(2):327-38. PubMed ID: 14327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific fluorescent labeling of 7-(aminomethyl)-7-deazaguanosine located in the anticodon of tRNATyr isolated from E. coli mutant.
    Kasai H; Shindo-Okada N; Noguchi S; Nishimura S
    Nucleic Acids Res; 1979 Sep; 7(1):231-8. PubMed ID: 386280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of elongation-factor-Tu . GTP and anticodon-anticodon interactions on the anticodon loop conformation of yeast tRNATyr.
    Weygand-Durasevic I; Kruse TA; Clark BF
    Eur J Biochem; 1981 May; 116(1):59-65. PubMed ID: 6265213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isomeric aminoacyl-tRNAs are both bound by elongation factor Tu.
    Hecht SM; Tan KH; Chinault AC; Arcari P
    Proc Natl Acad Sci U S A; 1977 Feb; 74(2):437-41. PubMed ID: 322124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of specific structural modification on the biological activity of E. coli arginine tRNA.
    Kruse TA; Clark BF
    Nucleic Acids Res; 1978 Mar; 5(3):879-92. PubMed ID: 347403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and processing of yeast precursor tRNAs containing intervening sequences.
    O'Farrell PZ; Cordell B; Valenzuela P; Rutter WJ; Goodman HM
    Nature; 1978 Aug; 274(5670):438-45. PubMed ID: 353564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein Synthesis in E. coli: Dependence of Codon-Specific Elongation on tRNA Concentration and Codon Usage.
    Rudorf S; Lipowsky R
    PLoS One; 2015; 10(8):e0134994. PubMed ID: 26270805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel mechanism of post-transcriptional modification of tRNA. Insertion of bases of Q precursors into tRNA by a specific tRNA transglycosylase reaction.
    Okada N; Noguchi S; Kasai H; Shindo-Okada N; Ohgi T; Goto T; Nishimura S
    J Biol Chem; 1979 Apr; 254(8):3067-73. PubMed ID: 372186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome.
    Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W
    EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of queuosine on tRNA structure and function.
    Morris RC; Brown KG; Elliott MS
    J Biomol Struct Dyn; 1999 Feb; 16(4):757-74. PubMed ID: 10217448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific replacement of Q base in the anticodon of tRNA by guanine catalyzed by a cell-free extract of rabbit reticulocytes.
    Okada N; Harada F; Nishimura S
    Nucleic Acids Res; 1976 Oct; 3(10):2593-603. PubMed ID: 792816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of mitochondrial elongation factors Tu.Ts with aminoacyl-tRNA.
    Benkowski LA; Takemoto C; Ott G; Beikman M; Ueda T; Watanabe K; Sprinzl M; Spremulli LL
    Nucleic Acids Symp Ser; 1995; (33):163-6. PubMed ID: 8643359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Base substitutions in the wobble position of the anticodon inhibit aminoacylation of E. coli tRNAfMet by E. coli Met-tRNA synthetase.
    Schulman LH; Pelka H; Susani M
    Nucleic Acids Res; 1983 Mar; 11(5):1439-55. PubMed ID: 6338482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of modified nucleosides in tRNA: effect of modification of the 2-thiouridine derivative located at the 5'-end of the anticodon of yeast transfer RNA Lys2.
    Sen GC; Ghosh HP
    Nucleic Acids Res; 1976 Mar; 3(3):523-35. PubMed ID: 775440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Four-base codon-mediated saturation mutagenesis in a cell-free translation system.
    Watanabe T; Muranaka N; Hohsaka T
    J Biosci Bioeng; 2008 Mar; 105(3):211-5. PubMed ID: 18397770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proofreading of the codon-anticodon interaction on ribosomes.
    Thompson RC; Stone PJ
    Proc Natl Acad Sci U S A; 1977 Jan; 74(1):198-202. PubMed ID: 319457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing by ribonuclease II of the tRNATyr precursor of Escherichia coli synthesized in vitro.
    Kitamura N; Ikeda H; Yamada Y; Ishikura H
    Eur J Biochem; 1977 Feb; 73(1):297-306. PubMed ID: 320007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterisation of a new, fully active fluorescent derivative of E. coli tRNA Phe.
    Plumbridge JA; Bäumert HG; Ehrenberg M; Rigler R
    Nucleic Acids Res; 1980 Feb; 8(4):827-43. PubMed ID: 6776491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mechanism of codon-anticodon interaction in ribosomes. Interaction of aminoacyl-tRNA with 70S ribosomes in the absence of elongation factor EF-Tu and GTP].
    Kemkhadze KSh; Odintsov VB; Makhno VI; Semenkov IuP; Kirillov SV
    Mol Biol (Mosk); 1981; 15(4):779-89. PubMed ID: 6912382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.