BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 1432706)

  • 1. Mitochondrial function in type I cells isolated from rabbit arterial chemoreceptors.
    Duchen MR; Biscoe TJ
    J Physiol; 1992 May; 450():13-31. PubMed ID: 1432706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from the rabbit carotid body.
    Duchen MR; Biscoe TJ
    J Physiol; 1992 May; 450():33-61. PubMed ID: 1432712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of type I cells dissociated from the rabbit carotid body to hypoxia.
    Biscoe TJ; Duchen MR
    J Physiol; 1990 Sep; 428():39-59. PubMed ID: 2231419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca(2+)-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons.
    Duchen MR
    Biochem J; 1992 Apr; 283 ( Pt 1)(Pt 1):41-50. PubMed ID: 1373604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia-induced catecholamine secretion in isolated newborn rat adrenal chromaffin cells is mimicked by inhibition of mitochondrial respiration.
    Mojet MH; Mills E; Duchen MR
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):175-89. PubMed ID: 9350628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen sensitivity of mitochondrial function in rat arterial chemoreceptor cells.
    Buckler KJ; Turner PJ
    J Physiol; 2013 Jul; 591(14):3549-63. PubMed ID: 23671162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relationship between mitochondrial state, ATP hydrolysis, [Mg2+]i and [Ca2+]i studied in isolated rat cardiomyocytes.
    Leyssens A; Nowicky AV; Patterson L; Crompton M; Duchen MR
    J Physiol; 1996 Oct; 496 ( Pt 1)(Pt 1):111-28. PubMed ID: 8910200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular basis of transduction in carotid chemoreceptors.
    Biscoe TJ; Duchen MR
    Am J Physiol; 1990 Jun; 258(6 Pt 1):L271-8. PubMed ID: 2193540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oscillations and hypoxic changes of mitochondrial variables in neurons of the brainstem respiratory centre of mice.
    Mironov SL; Richter DW
    J Physiol; 2001 May; 533(Pt 1):227-36. PubMed ID: 11351030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial inhibition prior to oxygen-withdrawal facilitates the occurrence of hypoxia-induced spreading depression in rat hippocampal slices.
    Gerich FJ; Hepp S; Probst I; Müller M
    J Neurophysiol; 2006 Jul; 96(1):492-504. PubMed ID: 16611842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resetting and postnatal maturation of oxygen chemosensitivity in rat carotid chemoreceptor cells.
    Wasicko MJ; Sterni LM; Bamford OS; Montrose MH; Carroll JL
    J Physiol; 1999 Jan; 514 ( Pt 2)(Pt 2):493-503. PubMed ID: 9852330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of an NAD(P)H oxidase as a pO2 sensor protein in the rat carotid body.
    Cross AR; Henderson L; Jones OT; Delpiano MA; Hentschel J; Acker H
    Biochem J; 1990 Dec; 272(3):743-7. PubMed ID: 2268299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NAD(P)H fluorescence imaging of mitochondrial metabolism in contracting Xenopus skeletal muscle fibers: effect of oxygen availability.
    Hogan MC; Stary CM; Balaban RS; Combs CA
    J Appl Physiol (1985); 2005 Apr; 98(4):1420-6. PubMed ID: 15591295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in mitochondrial function induced in isolated guinea-pig ventricular myocytes by calcium overload.
    Minezaki KK; Suleiman MS; Chapman RA
    J Physiol; 1994 May; 476(3):459-71. PubMed ID: 8057254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence.
    Danylovych HV
    Ukr Biochem J; 2016; 88(1):31-43. PubMed ID: 29227076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein.
    Huang S; Heikal AA; Webb WW
    Biophys J; 2002 May; 82(5):2811-25. PubMed ID: 11964266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+ controls slow NAD(P)H oscillations in glucose-stimulated mouse pancreatic islets.
    Luciani DS; Misler S; Polonsky KS
    J Physiol; 2006 Apr; 572(Pt 2):379-92. PubMed ID: 16455690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NAD(P)H fluorescence imaging of postsynaptic neuronal activation in murine hippocampal slices.
    Shuttleworth CW; Brennan AM; Connor JA
    J Neurosci; 2003 Apr; 23(8):3196-208. PubMed ID: 12716927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring NAD(P)H autofluorescence to assess mitochondrial metabolic functions in rat hippocampal-entorhinal cortex slices.
    Schuchmann S; Kovacs R; Kann O; Heinemann U; Buchheim K
    Brain Res Brain Res Protoc; 2001 Jul; 7(3):267-76. PubMed ID: 11431129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of neuronal activity and mitochondrial metabolism as revealed by NAD(P)H fluorescence signals in organotypic hippocampal slice cultures of the rat.
    Kann O; Schuchmann S; Buchheim K; Heinemann U
    Neuroscience; 2003; 119(1):87-100. PubMed ID: 12763071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.